论文标题

一种时空感知的气候模型结合方法,用于改善降水可预测性

A Spatiotemporal-Aware Climate Model Ensembling Method for Improving Precipitation Predictability

论文作者

Fan, Ming, Lu, Dan, Rastogi, Deeksha, Pierce, Eric M.

论文摘要

多模型结合已被广泛用于改善气候模型预测,并且改进在很大程度上取决于结合方案。在这项工作中,我们提出了一个贝叶斯神经网络(BNN)结合方法,该方法将气候模型结合在贝叶斯模型平均框架中,以提高模型集合的预测能力。我们提出的BNN方法通过利用单个模型的仿真技能来计算时空变化的模型权重和偏见,通过考虑观察数据不确定性来校准针对观察的集合预测,并量化在推断到新条件上时的认知不确定性。更重要的是,BNN方法提供了哪些气候模型对在哪些位置和时间的整体预测更大贡献的解释性。因此,除了其预测能力之外,该方法还带来了洞察力和对模型的了解,以指导进一步的模型和数据开发。在这项研究中,我们将BNN加权方案应用于CMIP6气候模型的集合,以每月在美国的降水预测。在合成和实际案例研究中,我们证明BNN比三种基线结合方法产生的每月降水的预测。 BNN可以正确地为单个模型更适合观察结果的区域和季节正确分配更大的重量。此外,它提供的可解释性与我们对本地气候模型性能的理解一致。此外,当预测与时期距离较远时,BNN表现出越来越多的不确定性,这可以适当地反映我们在不断变化的气候下模型的预测信心和可信赖性。

Multimodel ensembling has been widely used to improve climate model predictions, and the improvement strongly depends on the ensembling scheme. In this work, we propose a Bayesian neural network (BNN) ensembling method, which combines climate models within a Bayesian model averaging framework, to improve the predictive capability of model ensembles. Our proposed BNN approach calculates spatiotemporally varying model weights and biases by leveraging individual models' simulation skill, calibrates the ensemble prediction against observations by considering observation data uncertainty, and quantifies epistemic uncertainty when extrapolating to new conditions. More importantly, the BNN method provides interpretability about which climate model contributes more to the ensemble prediction at which locations and times. Thus, beyond its predictive capability, the method also brings insights and understanding of the models to guide further model and data development. In this study, we apply the BNN weighting scheme to an ensemble of CMIP6 climate models for monthly precipitation prediction over the conterminous United States. In both synthetic and real case studies, we demonstrate that BNN produces predictions of monthly precipitation with higher accuracy than three baseline ensembling methods. BNN can correctly assign a larger weight to the regions and seasons where the individual model fits the observation better. Moreover, its offered interpretability is consistent with our understanding of localized climate model performance. Additionally, BNN shows an increasing uncertainty when the prediction is farther away from the period with constrained data, which appropriately reflects our predictive confidence and trustworthiness of the models in the changing climate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源