论文标题
扬声器自适应唇读,用用户依赖填充
Speaker-adaptive Lip Reading with User-dependent Padding
论文作者
论文摘要
唇读旨在仅基于唇部运动来预测语音。当它专注于为语音建模的视觉信息时,其性能对个人唇部外观和动作固有敏感。由于训练和测试条件之间的不匹配,这使得唇读模型将其应用于看不见的说话者时,表现出降低的性能。演讲者的适应技术旨在减少火车和测试扬声器之间的不匹配,从而指导训练有素的模型,以专注于对语音内容进行建模而不由说话者变化介入。与数十年来基于音频的语音识别所做的努力相反,扬声器适应方法在唇部阅读中尚未得到很好的研究。在本文中,为了纠正看不见的扬声器的唇读模型的性能降解,我们提出了一种扬声器自适应的唇部阅读方法,即用户依赖用户依赖用户。依赖用户的填充是一种特定于扬声器的输入,可以参与预训练的唇读模型的视觉特征提取阶段。因此,可以在编码视觉功能期间考虑不同扬声器的唇外观和动作信息,适合单个扬声器。此外,所提出的方法不需要1)任何其他层,2)修改预训练模型的学习权重,以及3)预训练期间使用的火车数据的扬声器标签。它只能以监督或无监督的方式学习用户依赖的填充,直接适应了看不见的说话者。最后,为了减轻公共唇部阅读数据库中的扬声器信息不足,我们将众所周知的视听数据库的扬声器标记为LRW,并设计了一种名为LRW-ID的扬声器嘴唇阅读方案。
Lip reading aims to predict speech based on lip movements alone. As it focuses on visual information to model the speech, its performance is inherently sensitive to personal lip appearances and movements. This makes the lip reading models show degraded performance when they are applied to unseen speakers due to the mismatch between training and testing conditions. Speaker adaptation technique aims to reduce this mismatch between train and test speakers, thus guiding a trained model to focus on modeling the speech content without being intervened by the speaker variations. In contrast to the efforts made in audio-based speech recognition for decades, the speaker adaptation methods have not well been studied in lip reading. In this paper, to remedy the performance degradation of lip reading model on unseen speakers, we propose a speaker-adaptive lip reading method, namely user-dependent padding. The user-dependent padding is a speaker-specific input that can participate in the visual feature extraction stage of a pre-trained lip reading model. Therefore, the lip appearances and movements information of different speakers can be considered during the visual feature encoding, adaptively for individual speakers. Moreover, the proposed method does not need 1) any additional layers, 2) to modify the learned weights of the pre-trained model, and 3) the speaker label of train data used during pre-train. It can directly adapt to unseen speakers by learning the user-dependent padding only, in a supervised or unsupervised manner. Finally, to alleviate the speaker information insufficiency in public lip reading databases, we label the speaker of a well-known audio-visual database, LRW, and design an unseen-speaker lip reading scenario named LRW-ID.