论文标题

“轮到我了吗?”在协作沉浸分析中评估团队合作和任务工作

"Is It My Turn?" Assessing Teamwork and Taskwork in Collaborative Immersive Analytics

论文作者

Benk, Michaela, Weibel, Raphael, Feuerriegel, Stefan, Ferrario, Andrea

论文摘要

沉浸式分析有可能促进机器学习(ML)的合作。这是由于实践中ML建模的特定特征,即ML的复杂性,工业跨学科方法以及对ML可解释性的需求。在这项工作中,我们介绍了一种基于现实的增强现实系统,用于协作沉浸式分析,该系统旨在支持跨学科团队中的ML建模。我们进行了一项用户研究,以研究当具有不同专业背景和ML知识水平的用户在解决不同的ML任务时相互作用时,协作的发展。具体来说,我们使用对分析方法和绩效评估来评估协作并探索他们相互互动和系统的相互作用。基于此,我们在协作期间为团队合作和任务工作提供了定性和定量的结果。我们的结果表明,我们的系统如何沿着六个不同的维度衡量。最终,我们提出建议,如何设计沉浸式系统以引起ML建模中的持续协作。

Immersive analytics has the potential to promote collaboration in machine learning (ML). This is desired due to the specific characteristics of ML modeling in practice, namely the complexity of ML, the interdisciplinary approach in industry, and the need for ML interpretability. In this work, we introduce an augmented reality-based system for collaborative immersive analytics that is designed to support ML modeling in interdisciplinary teams. We conduct a user study to examine how collaboration unfolds when users with different professional backgrounds and levels of ML knowledge interact in solving different ML tasks. Specifically, we use the pair analytics methodology and performance assessments to assess collaboration and explore their interactions with each other and the system. Based on this, we provide qualitative and quantitative results on both teamwork and taskwork during collaboration. Our results show how our system elicits sustained collaboration as measured along six distinct dimensions. We finally make recommendations how immersive systems should be designed to elicit sustained collaboration in ML modeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源