论文标题
量子厅阶段的拓扑超导体:有效的现场理论描述
Topological Superconductor from the Quantum Hall Phase: Effective Field Theory Description
论文作者
论文摘要
我们为量子异常大厅和拓扑超导阶段得出低能的有效野外理论。量子厅阶段是根据具有非依赖性分散关系的自由费米(具有全球$ u(1)$对称性的。我们将这种对称性与背景量规场相结合,并通过整合散布的费米子来计算有效的动作。尽管管理原始费米子动态的相应狄拉克操作员是非依赖主义的,但有效动作的主要贡献是通常的Abelian $ U(1)$ Chern-Simons术语。与常规超导体的接近性在量子厅状态下诱导配对潜力,有利于库珀对的形成。当配对足够强大时,它会将系统驱动到拓扑超导阶段,并容纳Majoraana fermions。即使连续$ u(1)$对称性被分解为$ \ mathbb {z} _2 $ ONE,我们也可以锻造虚拟的$ u(1)$ symmetries,使我们能够为拓扑超导阶段得出有效的动作,也是由Chern-Simons理论给出的。为了消除来自人工对称性扩大的虚假状态,我们要求有效动作中的田地为$ O(2)$,而不是$ u(1)$ gauge字段。在$ o(2)$案例中,我们必须在分区功能中的$ \ mathbb {z} _2 $捆绑中汇总,该函数将不是$ \ mathbb {z} _2 _2 $不变的状态。相应的边缘理论是$ u(1)/\ mathbb {z} _2 $ orbifold,其中包含其操作员内容中的majorana fermions。
We derive low-energy effective field theories for the quantum anomalous Hall and topological superconducting phases. The quantum Hall phase is realized in terms of free fermions with nonrelativistic dispersion relation, possessing a global $U(1)$ symmetry. We couple this symmetry with a background gauge field and compute the effective action by integrating out the gapped fermions. In spite of the fact that the corresponding Dirac operator governing the dynamics of the original fermions is nonrelativistic, the leading contribution in the effective action is a usual Abelian $U(1)$ Chern-Simons term. The proximity to a conventional superconductor induces a pairing potential in the quantum Hall state, favoring the formation of Cooper pairs. When the pairing is strong enough, it drives the system to a topological superconducting phase, hosting Majorana fermions. Even though the continuum $U(1)$ symmetry is broken down to a $\mathbb{Z}_2$ one, we can forge fictitious $U(1)$ symmetries that enable us to derive the effective action for the topological superconducting phase, also given by a Chern-Simons theory. To eliminate spurious states coming from the artificial symmetry enlargement, we demand that the fields in the effective action are $O(2)$ instead of $U(1)$ gauge fields. In the $O(2)$ case we have to sum over the $\mathbb{Z}_2$ bundles in the partition function, which projects out the states that are not $\mathbb{Z}_2$ invariants. The corresponding edge theory is the $U(1)/\mathbb{Z}_2$ orbifold, which contains Majorana fermions in its operator content.