论文标题

多边形的模量和多面体的变形

Moduli spaces of polygons and deformations of polyhedra with boundary

论文作者

Anan'in, Sasha, Korshunov, Dmitrii

论文摘要

我们证明了Ian Agol的猜想:多面体表面的所有等距实现,边界在多形构成边界的多边形的Kapovich-Millson Moduli空间中扫除了各向同性子集。对于通用的多面体磁盘,我们显示其等距实现的边界构成了拉格朗日子集。作为此结果的应用,我们为Richard Kenyon的问题获得了一个新的解决方案,内容涉及跨越R^3中的单位间隔组成的分段线性曲线。

We prove a conjecture of Ian Agol: all isometric realizations of a polyhedral surface with boundary sweep out an isotropic subset in the Kapovich-Millson moduli space of polygons isomorphic to the boundary. For a generic polyhedral disk we show that boundaries of its isometric realizations make up a Lagrangian subset. As an application of this result, we obtain a new solution to the problem of Richard Kenyon about spanning domes of piecewise linear curves comprised of unit intervals in R^3.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源