论文标题
LDPC解码器中的学习量化
Learning Quantization in LDPC Decoders
论文作者
论文摘要
查找最佳消息量化是低复杂性信念传播(BP)解码的关键要求。为此,我们提出了一个浮点替代模型,该模型模仿量化效应,作为均匀噪声的添加,其幅度是可训练的变量。我们验证替代模型与定点实现的行为非常匹配,并提出了手工制作的损失功能,以实现复杂性和误差效果之间的权衡。然后应用一种基于深度学习的方法来优化消息位。此外,我们表明参数共享既可以确保实施友好的解决方案,又比独立参数导致更快的培训融合。我们为5G低密度平等检查(LDPC)代码提供模拟结果,并在浮点分解的0.2 dB内报告误差率性能,以3.1位的平均消息量化位数为3.1位。此外,我们表明,学到的位宽也将其推广到其他代码率和渠道。
Finding optimal message quantization is a key requirement for low complexity belief propagation (BP) decoding. To this end, we propose a floating-point surrogate model that imitates quantization effects as additions of uniform noise, whose amplitudes are trainable variables. We verify that the surrogate model closely matches the behavior of a fixed-point implementation and propose a hand-crafted loss function to realize a trade-off between complexity and error-rate performance. A deep learning-based method is then applied to optimize the message bitwidths. Moreover, we show that parameter sharing can both ensure implementation-friendly solutions and results in faster training convergence than independent parameters. We provide simulation results for 5G low-density parity-check (LDPC) codes and report an error-rate performance within 0.2 dB of floating-point decoding at an average message quantization bitwidth of 3.1 bits. In addition, we show that the learned bitwidths also generalize to other code rates and channels.