论文标题

无分配位置尺度回归

Distribution-Free Location-Scale Regression

论文作者

Siegfried, Sandra, Kook, Lucas, Hothorn, Torsten

论文摘要

我们为位置,比例和形状(GAMLSS)介绍了一个广义的加性模型,该模型旨在针对任意结果的无分布和简约的回归建模。我们通过转换函数替换严格的参数分布,从而从数据估算了该模型。这样做不仅使模型分配不足,而且还允许将线性或平滑模型项的数量限制为一对位置尺度预测器函数。我们得出了连续,离散和随机审查的观测值以及相应的分数函数的可能性。利用大量现有算法进行模型估计,包括受限的最大可能性,原始的gamlss算法和变换树。所得模型中的参数可解释性紧密连接到模型选择。我们建议采用新型最佳子集选择程序来实现特别简单的解释方式。所有技术都通过来自不同领域的应用集合,包括交叉和部分比例危害,复杂的计数回归,非线性序数回归和生长曲线来激发和说明。所有分析均可借助“电车”附加软件包,用于统计计算和图形的R系统。

We introduce a generalized additive model for location, scale, and shape (GAMLSS) next of kin aiming at distribution-free and parsimonious regression modelling for arbitrary outcomes. We replace the strict parametric distribution formulating such a model by a transformation function, which in turn is estimated from data. Doing so not only makes the model distribution-free but also allows to limit the number of linear or smooth model terms to a pair of location-scale predictor functions. We derive the likelihood for continuous, discrete, and randomly censored observations, along with corresponding score functions. A plethora of existing algorithms is leveraged for model estimation, including constrained maximum-likelihood, the original GAMLSS algorithm, and transformation trees. Parameter interpretability in the resulting models is closely connected to model selection. We propose the application of a novel best subset selection procedure to achieve especially simple ways of interpretation. All techniques are motivated and illustrated by a collection of applications from different domains, including crossing and partial proportional hazards, complex count regression, non-linear ordinal regression, and growth curves. All analyses are reproducible with the help of the "tram" add-on package to the R system for statistical computing and graphics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源