论文标题

多个来源的主动采样以进行顺序估计

Active Sampling of Multiple Sources for Sequential Estimation

论文作者

Mukherjee, Arpan, Tajer, Ali, Chen, Pin-Yu, Das, Payel

论文摘要

考虑$ k $过程,每个过程都会生成一系列相同和独立的随机变量。这些过程的概率度量具有必须估计的随机参数。具体来说,它们共享所有概率度量共同的参数$θ$。此外,每个过程$ i \ in \ {1,\ dots,k \} $都有一个私有参数$α_i$。目的是设计一种主动采样算法,以顺序估算这些参数,以形成所有样品数量最少的共享和私人参数的可靠估计。该采样算法具有三个关键组件:(i)数据驱动的采样决策,随着时间的推移,该决策的动态指定应选择哪些$ k $过程进行采样; (ii)〜停止该过程的时间,该过程指定何时累积数据足以形成可靠的估计并终止采样过程; (iii)〜所有共享和私人参数的估计器。由于已知的顺序估计在分析上是棘手的,因此本文采用了\ emph {条件}估计成本函数,从而导致了连续估计方法,该方法最近被证明可以进行可拖动分析。划定了渐近最佳决策规则(采样,停止和估计),并提供了数值实验,以将所提出的程序的疗效和质量与相关方法进行比较。

Consider $K$ processes, each generating a sequence of identical and independent random variables. The probability measures of these processes have random parameters that must be estimated. Specifically, they share a parameter $θ$ common to all probability measures. Additionally, each process $i\in\{1, \dots, K\}$ has a private parameter $α_i$. The objective is to design an active sampling algorithm for sequentially estimating these parameters in order to form reliable estimates for all shared and private parameters with the fewest number of samples. This sampling algorithm has three key components: (i)~data-driven sampling decisions, which dynamically over time specifies which of the $K$ processes should be selected for sampling; (ii)~stopping time for the process, which specifies when the accumulated data is sufficient to form reliable estimates and terminate the sampling process; and (iii)~estimators for all shared and private parameters. Owing to the sequential estimation being known to be analytically intractable, this paper adopts \emph {conditional} estimation cost functions, leading to a sequential estimation approach that was recently shown to render tractable analysis. Asymptotically optimal decision rules (sampling, stopping, and estimation) are delineated, and numerical experiments are provided to compare the efficacy and quality of the proposed procedure with those of the relevant approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源