论文标题
弗洛凯特二阶拓扑超导体中Majoraana角模式的时间演变
Time evolution of Majorana corner modes in Floquet second-order topological superconductor
论文作者
论文摘要
我们在现场质量术语中提出了实际上可行的时间周期性正弦驱动方案,以产生二维〜(2D)floquet二阶式拓扑超导体,同时启动常规的$ 0 $ - 和异常$π$ -Majorana Corner〜(MCMS),同时从整体上/$ $ $ dd $ dd $ dd $ dd $ dd $ dd $ dd $ - 设置。从理论上讲,我们在存在此类驱动器的情况下研究了局部密度光谱和MCM的时间动力学。动态MCM的拓扑表征是采用平均四极运动。此外,我们在强大的驱动幅度极限中采用了浮动扰动理论〜(FPT),以提供对问题的分析见解。我们比较了我们的精确(数值),并根据特征值光谱和MCMS的时间动力学进行比较。我们强调,在较高的频率制度中,对于接近$ 0 $ -Quasi-Energy模式,确切的数值和FPT结果之间的一致性更为突出。
We propose a practically feasible time-periodic sinusoidal drive protocol in onsite mass term to generate the two-dimensional~(2D) Floquet second-order topological superconductor, hosting both the regular $0$- and anomalous $π$-Majorana corner modes~(MCMs) while starting from a static 2D topological insulator/$d$-wave superconductor heterostructure setup. We theoretically study the local density spectra and the time dynamics of MCMs in the presence of such drive. The dynamical MCMs are topologically characterized by employing the average quadrupolar motion. Furthermore, we employ the Floquet perturbation theory~(FPT) in the strong driving amplitude limit to provide analytical insight into the problem. We compare our exact (numerical), and the FPT results in terms of the eigenvalue spectra and the time dynamics of the MCMs. We emphasize that the agreement between the exact numerical and the FPT results are more prominent in the higher frequency regime for close to the $0$-quasi-energy mode.