论文标题

关于算术进展中素数的存在

On the existence of products of primes in arithmetic progressions

论文作者

Szabó, Barnabás

论文摘要

我们研究了基于拉马雷和沃克的工作,研究算术进步中的素数产物。我们的主要结果之一是,如果$ q $是大型模量,那么任何可逆的残基类mod $ q $都包含三个素数的产物,其中每个素数最多为$ q^{6/5+ε} $。我们的论点使用了来自多种领域的结果,例如筛理论或添加剂组合学,以及我们以前在这种情况下尚未使用过的关键成分之一,是希思·布朗(Heath-Brown)在linnik定理上的论文中的素数的结果。

We study the existence of products of primes in arithmetic progressions, building on the work of Ramaré and Walker. One of our main results is that if $q$ is a large modulus, then any invertible residue class mod $q$ contains a product of three primes where each prime is at most $q^{6/5+ε}$. Our arguments use results from a wide range of areas, such as sieve theory or additive combinatorics, and one of our key ingredients, which has not been used in this setting before, is a result by Heath-Brown on character sums over primes from his paper on Linnik's theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源