论文标题

恒星形成历史的随机建模iii。从物理动机的高斯过程中的限制

Stochastic Modelling of Star Formation Histories III. Constraints from Physically-Motivated Gaussian Processes

论文作者

Iyer, Kartheik G., Speagle, Joshua S., Caplar, Neven, Forbes, John C., Gawiser, Eric, Leja, Joel, Tacchella, Sandro

论文摘要

星系的形成和进化涉及在不同时间尺度上运行的各种有效的随机过程。由于这些过程,扩展的调节器模型为全星颗恒星形成中产生的变异性(或“爆发”)提供了一个分析框架。它通过将傅立叶空间的可变性与随机气体流入,平衡和动态过程的有效时间尺度相关联,从而影响了GMC创造和使用功率频谱密度(PSD)形式主义。我们使用PSD和自动协方差函数(ACF)之间的连接进行一般随机过程,以将该模型作为自动协方差函数重新将其重新制定,我们使用该函数在Galaxy Star形成历史(SFHS)中使用Log SFR空间中的物理动机的高斯进程对Galaxy Star形成历史(SFHS)进行建模。然后,我们使用恒星种群合成模型,然后探索模型随机性的变化如何影响星系种群的光谱特征,其特性类似于银河系和当今的矮人以及更高的红移。我们发现,即使在固定的散射下,对随机性模型的扰动(改变时间标准与总体可变性)也会在理想化和更现实的星系群体中留下独特的光谱特征。光谱功能的分布,包括H $α$和基于UV的SFR指标,H $δ$和CA-H,K吸收线强度,D $ _N $(4000)和宽带颜色,从当前和即将到来的Surveys与Hubble,Webb \&Roman提供了可测试的Galaxy群体。高斯流程SFH框架为下一代SED建模工具提供了快速,灵活的物理协方差模型。可以在https://github.com/kartheikiyer/gp-sfh上找到复制我们结果的代码

Galaxy formation and evolution involves a variety of effectively stochastic processes that operate over different timescales. The Extended Regulator model provides an analytic framework for the resulting variability (or `burstiness') in galaxy-wide star formation due to these processes. It does this by relating the variability in Fourier space to the effective timescales of stochastic gas inflow, equilibrium, and dynamical processes influencing GMC creation and destruction using the power spectral density (PSD) formalism. We use the connection between the PSD and auto-covariance function (ACF) for general stochastic processes to reformulate this model as an auto-covariance function, which we use to model variability in galaxy star formation histories (SFHs) using physically-motivated Gaussian Processes in log SFR space. Using stellar population synthesis models, we then explore how changes in model stochasticity can affect spectral signatures across galaxy populations with properties similar to the Milky Way and present-day dwarfs as well as at higher redshifts. We find that, even at fixed scatter, perturbations to the stochasticity model (changing timescales vs overall variability) leave unique spectral signatures across both idealized and more realistic galaxy populations. Distributions of spectral features including H$α$ and UV-based SFR indicators, H$δ$ and Ca-H,K absorption line strengths, D$_n$(4000) and broadband colors provide testable predictions for galaxy populations from present and upcoming surveys with Hubble, Webb \& Roman. The Gaussian process SFH framework provides a fast, flexible implementation of physical covariance models for the next generation of SED modeling tools. Code to reproduce our results can be found at https://github.com/kartheikiyer/GP-SFH

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源