论文标题

局部网络的患病率和可扩展控制

Prevalence and scalable control of localized networks

论文作者

Duan, Chao, Nishikawa, Takashi, Motter, Adilson E.

论文摘要

控制网络动态的能力对于确保许多技术,生物学和社会系统的理想功能至关重要。这样的系统通常由大量的网络元素组成,控制大规模网络仍然具有挑战性,因为计算和通信需求随着网络大小而迅速地增加。在这里,我们介绍了一个网络局部性的概念,即使动力学是非线性的,也可以利用该网络的控制,以使网络可扩展。我们表明,网络局部性是由信息度量标准捕获的,几乎是在实际和模型网络中普遍观察到的。在局部网络中,最佳控制动作和系统响应都必须集中在信息指标引起的小社区中。这使我们能够开发用于确定网络可控性并优化驱动程序节点的放置的局部算法。这也使我们能够开发出一种局部算法,用于设计本地反馈控制器,该算法接近相应的最佳全球控制器的性能,同时降低计算成本量的阶数。我们验证了库拉莫托振荡器网络中算法的位置,性能和效率以及三个大型经验网络:美国东部美国电网的同步动力学,全球航空运输网络介导的流行病,以及人类脑网络中的阿尔茨海默氏病动力学。综上所述,我们的结果表明,可以通过与小型网络相当的计算和通信成本来控制大型网络。

The ability to control network dynamics is essential for ensuring desirable functionality of many technological, biological, and social systems. Such systems often consist of a large number of network elements, and controlling large-scale networks remains challenging because the computation and communication requirements increase prohibitively fast with network size. Here, we introduce a notion of network locality that can be exploited to make the control of networks scalable even when the dynamics are nonlinear. We show that network locality is captured by an information metric and is almost universally observed across real and model networks. In localized networks, the optimal control actions and system responses are both shown to be necessarily concentrated in small neighborhoods induced by the information metric. This allows us to develop localized algorithms for determining network controllability and optimizing the placement of driver nodes. This also allows us to develop a localized algorithm for designing local feedback controllers that approach the performance of the corresponding best global controllers while incurring a computational cost orders-of-magnitude lower. We validate the locality, performance, and efficiency of the algorithms in Kuramoto oscillator networks as well as three large empirical networks: synchronization dynamics in the Eastern U.S. power grid, epidemic spreading mediated by the global air transportation network, and Alzheimer's disease dynamics in a human brain network. Taken together, our results establish that large networks can be controlled with computation and communication costs comparable to those for small networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源