论文标题

较高的电流代数,同型MANIN三元组和直线阿德莱克复合物

Higher current algebras, homotopy Manin triples, and a rectilinear adelic complex

论文作者

Alfonsi, Luigi, Young, Charles A. S.

论文摘要

Lie代数的Manin三重概念承认了DG代数的概括,其中只需要各种特性才能保持同型。 本文介绍了此类同型Manin三元组的两个示例。这些示例与分别具有多个穿刺的刺破形式的1盘和复杂平面的复数尺寸两个相关。在Faonte,Hennion和Kapranov Arxiv的意义上,DG谎言代数包括某些较高的电流代数:1701.01368。 我们在一个响亮的空间中工作,称为直线空间,我们引入的工具之一是其结构捆的派生部分的模型,其结构捆绑的构造是由于Parshin和Beilinson而引起的,其结构是针对方案的Adelic Complexs的精神。

The notion of a Manin triple of Lie algebras admits a generalization, to dg Lie algebras, in which various properties are required to hold only up to homotopy. This paper introduces two classes of examples of such homotopy Manin triples. These examples are associated to analogs in complex dimension two of, respectively, the punctured formal 1-disc, and the complex plane with multiple punctures. The dg Lie algebras which appear include certain higher current algebras in the sense of Faonte, Hennion and Kapranov arXiv:1701.01368. We work in a ringed space we call rectilinear space, and one of the tools we introduce is a model of the derived sections of its structure sheaf, whose construction is in the spirit of the adelic complexes for schemes due to Parshin and Beilinson.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源