论文标题
广义的爱因斯坦重力和广义广告对称性
Generalized Einstein gravities and generalized AdS symmetries
论文作者
论文摘要
我们考虑与ADSL4相关的曲率2形式,价值一型量规连接,然后我们构建了一种四维作用,以推广Einstein-Hilbert Gravity。结果表明,爱因斯坦重力的麦克斯韦延伸可以利用使用Inonu-Wigner收缩方法获得ADSL4-Gravity。同样,通过测量ADSL5时空代数,Einstein-Hilbert Gravity被扩展,包括与非阿布尔张量和非Abelian量相关的矢量kab和HA,而ADSL5代数中的非Abelian Vectors指控。爱因斯坦重力的B5扩展可以使用上述收缩程序从ADSL5重力获得。附录中考虑了基于代数ADSL6的重力的某些方面。
We consider the curvatures 2 form asociated with AdSL4 valued one-form gauge connetion, and then we construct a four-dimensional action that generalize the Einstein-Hilbert gravity. It is shown that the Maxwell extension of Einstein gravity can be obtained from AdSL4-gravity making use of the Inonu-Wigner contraction method. In the same way, by gauging the AdSL5 spacetime algebra, the Einstein-Hilbert gravity is extended including the vector fields kab and ha which are associated with non-Abelian tensors and non Abelian vectors charges in the AdSL5 algebra. The B5 extension of Einstein gravity can be obtained from AdSL5 gravity using of the above mentioned contraction procedure. Some aspects of a gravity based on the algebra AdSL6 are considered in an appendix.