论文标题

样式光谱学:通过傅立叶分析提高可解释性和可控性

Style Spectroscope: Improve Interpretability and Controllability through Fourier Analysis

论文作者

Jin, Zhiyu, Shen, Xuli, Li, Bin, Xue, Xiangyang

论文摘要

通用样式转移(UST)从任意参考图像中注入样式中的内容图像。现有的方法虽然享有许多实际的成功,但无法解释实验观察,包括UST算法的不同性能在保留内容图像的空间结构时。此外,方法仅限于对风格化的繁琐全局控制,因此它们需要其他空间掩码才能进行所需的风格化。在这项工作中,我们在UST的一般框架上提供了系统的傅立叶分析。我们在频域中提出了框架的等效形式。形式意味着现有算法平均处理特征图的所有频率组件和像素,除了零频率组件。我们分别将傅立叶振幅和相位与革兰氏矩阵和样式转移的内容重建损失联系起来。因此,基于这种等效性和连接,我们可以解释具有傅立叶相的算法之间的不同结构保存行为​​。鉴于我们的解释,我们在实践中提出了两种操纵结构保存和所需的风格化。定性和定量实验都证明了我们方法对最新方法的竞争性能。我们还进行实验以证明(1)上述等效性,(2)基于傅立叶幅度和相位的可解释性以及(3)与频率分量相关的可控性。

Universal style transfer (UST) infuses styles from arbitrary reference images into content images. Existing methods, while enjoying many practical successes, are unable of explaining experimental observations, including different performances of UST algorithms in preserving the spatial structure of content images. In addition, methods are limited to cumbersome global controls on stylization, so that they require additional spatial masks for desired stylization. In this work, we provide a systematic Fourier analysis on a general framework for UST. We present an equivalent form of the framework in the frequency domain. The form implies that existing algorithms treat all frequency components and pixels of feature maps equally, except for the zero-frequency component. We connect Fourier amplitude and phase with Gram matrices and a content reconstruction loss in style transfer, respectively. Based on such equivalence and connections, we can thus interpret different structure preservation behaviors between algorithms with Fourier phase. Given the interpretations we have, we propose two manipulations in practice for structure preservation and desired stylization. Both qualitative and quantitative experiments demonstrate the competitive performance of our method against the state-of-the-art methods. We also conduct experiments to demonstrate (1) the abovementioned equivalence, (2) the interpretability based on Fourier amplitude and phase and (3) the controllability associated with frequency components.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源