论文标题

大脑信号可以揭示与人类语言的内部一致性吗?

Can Brain Signals Reveal Inner Alignment with Human Languages?

论文作者

Han, William, Qiu, Jielin, Zhu, Jiacheng, Xu, Mengdi, Weber, Douglas, Li, Bo, Zhao, Ding

论文摘要

脑信号(例如脑电图(EEG))和人类语言已被广泛探讨了许多下游任务,但是,它们之间的联系并未得到很好的探索。在这项研究中,我们探讨了脑电图与语言之间的关系和依赖性。为了在表示级别进行研究,我们介绍了\ textbf {mtam},a \ textbf {m} ult -imodal \ textbf {t} ransformer \ textbf {a} strignment \ textbf \ textbf {m} odel,以观察两个模态之间的协调表示。我们使用各种关系对齐的寻求对准技术,例如规范相关分析和Wasserstein距离,作为对变形特征的损失函数。在下游应用程序,情感分析和关系检测上,我们在两个数据集中取得了新的最新结果,即Zuco和K-Emocon。我们的方法在K-Emocon上的F1得分提高了1.7%,对Zuco数据集的F1得分提高了9.3%,以进行情感分析,为7.4%的Zuco进行关系检测。此外,我们还提供了改进性能的解释:(1)特征分布显示了对齐模块发现和编码脑电图与语言之间关系的有效性; (2)对齐权重显示了不同语言语义和脑电图频率特征的影响; (3)大脑地形图提供了大脑区域连通性的直观演示。我们的代码可在\ url {https://github.com/jason-qiu/eeg_language_alignment}获得。

Brain Signals, such as Electroencephalography (EEG), and human languages have been widely explored independently for many downstream tasks, however, the connection between them has not been well explored. In this study, we explore the relationship and dependency between EEG and language. To study at the representation level, we introduced \textbf{MTAM}, a \textbf{M}ultimodal \textbf{T}ransformer \textbf{A}lignment \textbf{M}odel, to observe coordinated representations between the two modalities. We used various relationship alignment-seeking techniques, such as Canonical Correlation Analysis and Wasserstein Distance, as loss functions to transfigure features. On downstream applications, sentiment analysis and relation detection, we achieved new state-of-the-art results on two datasets, ZuCo and K-EmoCon. Our method achieved an F1-score improvement of 1.7% on K-EmoCon and 9.3% on Zuco datasets for sentiment analysis, and 7.4% on ZuCo for relation detection. In addition, we provide interpretations of the performance improvement: (1) feature distribution shows the effectiveness of the alignment module for discovering and encoding the relationship between EEG and language; (2) alignment weights show the influence of different language semantics as well as EEG frequency features; (3) brain topographical maps provide an intuitive demonstration of the connectivity in the brain regions. Our code is available at \url{https://github.com/Jason-Qiu/EEG_Language_Alignment}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源