论文标题

分层系统的有效张量网络算法

Efficient tensor network algorithm for layered systems

论文作者

Vlaar, Patrick C. G., Corboz, Philippe

论文摘要

在凝结物理学中,密切相关的分层2D系统至关重要,但是它们的数值研究非常具有挑战性。受张量网络对1D和2D系统的巨大成功的启发,我们基于基于无限投影的纠缠对态(IPEP)的有效张量网络方法,用于分层的2D系统。从各向异性3D IPEPS ANSATZ开始,我们提出了一种收缩方案,其中弱相互交互的层有效地脱离了层中心的中心,以便可以使用2D收缩方法有效地收缩它们,同时保持最相关的层中心的中心以捕获最相关的InterlayerMitlayAllaneMetlayers Interlayers Interlayers Interlayers Interlayers Interlayers imellayer imeLayer imeLameAlyAllayAly imeLlayer imeLayer corelelations。我们介绍了在立方晶格上的各向异性3D海森贝格模型的基准数据,该模型与量子蒙特卡洛(QMC)和完整的3D收缩结果显示出密切的一致性。最后,我们研究了与层间耦合的二聚体二聚体向Néel相变的二聚体,这是一种沮丧的旋转模型,由于负符号问题,它无法触及QMC。

Strongly correlated layered 2D systems are of central importance in condensed matter physics, but their numerical study is very challenging. Motivated by the enormous successes of tensor networks for 1D and 2D systems, we develop an efficient tensor network approach based on infinite projected entangled-pair states (iPEPS) for layered 2D systems. Starting from an anisotropic 3D iPEPS ansatz, we propose a contraction scheme in which the weakly-interacting layers are effectively decoupled away from the center of the layers, such that they can be efficiently contracted using 2D contraction methods while keeping the center of the layers connected in order to capture the most relevant interlayer correlations. We present benchmark data for the anisotropic 3D Heisenberg model on a cubic lattice, which shows close agreement with quantum Monte Carlo (QMC) and full 3D contraction results. Finally, we study the dimer to Néel phase transition in the Shastry-Sutherland model with interlayer coupling, a frustrated spin model which is out of reach of QMC due to the negative sign problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源