论文标题

CCRL:对比细胞表示学习

CCRL: Contrastive Cell Representation Learning

论文作者

Nakhli, Ramin, Darbandsari, Amirali, Farahani, Hossein, Bashashati, Ali

论文摘要

H&E载玻片中的细胞识别是必不可少的先决条件,可以为进一步的病理分析铺平道路,包括组织分类,癌症分级和表型预测。但是,使用深度学习技术执行此类任务需要大型的细胞级注释数据集。尽管以前的研究已经研究了组织分类中对比度自我监督方法的性能,但该类别算法在细胞鉴定和聚类中的实用性仍然未知。在这项工作中,我们通过提出对比度细胞表示学习(CCRL)模型来研究细胞聚类中自学学习(SSL)的实用性。通过全面的比较,我们表明该模型可以通过来自不同组织类型的两个数据集的大幅度优于所有当前可用的细胞聚类模型。更有趣的是,结果表明,我们提出的模型在几个单元格类别中运作良好,而SSL模型的实用性主要在具有大量类别的自然图像数据集的背景下显示(例如,ImageNet)。本研究中提出的无监督表示学习方法消除了细胞分类任务中数据注释的时间耗时步骤,这使我们能够在与以前的方法相比更大的数据集上训练我们的模型。因此,考虑到有希望的结果,这种方法可以为自动细胞表示学习打开新的途径。

Cell identification within the H&E slides is an essential prerequisite that can pave the way towards further pathology analyses including tissue classification, cancer grading, and phenotype prediction. However, performing such a task using deep learning techniques requires a large cell-level annotated dataset. Although previous studies have investigated the performance of contrastive self-supervised methods in tissue classification, the utility of this class of algorithms in cell identification and clustering is still unknown. In this work, we investigated the utility of Self-Supervised Learning (SSL) in cell clustering by proposing the Contrastive Cell Representation Learning (CCRL) model. Through comprehensive comparisons, we show that this model can outperform all currently available cell clustering models by a large margin across two datasets from different tissue types. More interestingly, the results show that our proposed model worked well with a few number of cell categories while the utility of SSL models has been mainly shown in the context of natural image datasets with large numbers of classes (e.g., ImageNet). The unsupervised representation learning approach proposed in this research eliminates the time-consuming step of data annotation in cell classification tasks, which enables us to train our model on a much larger dataset compared to previous methods. Therefore, considering the promising outcome, this approach can open a new avenue to automatic cell representation learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源