论文标题

无限和有限直接总和模块的基本结果

An elementary result on infinite and finite direct sums of modules

论文作者

Bergman, George M.

论文摘要

令$ r $为戒指,并考虑一个用两个(通常是无限)直接分解给出的左$ r $ - 模块,$ a \ oplus(\ bigoplus_ {i} in i} c_i)= m = m = b \ oplus(\ bigoplus_有限生成。我们表明,存在有限的子集$ i_0 \ subseteq i,$ $ j_0 \ subseteq j,$和直接的summand $ y \ y \ subseteq \ bigoplus_ {i \ in I_0} c_i,$ 然后,我们注意到这种结果可以并且无法概括的一些方法,以及一些相关的问题。

Let $R$ be a ring, and consider a left $R$-module given with two (generally infinite) direct sum decompositions, $A\oplus(\bigoplus_{i\in I} C_i)=M=B\oplus(\bigoplus_{j\in J} D_j),$ such that the submodules $A$ and $B$ and the $D_j$ are each finitely generated. We show that there then exist finite subsets $I_0\subseteq I,$ $J_0\subseteq J,$ and a direct summand $Y\subseteq \bigoplus_{i\in I_0} C_i,$ such that $A \oplus Y \ =\ B \oplus(\bigoplus_{j\in J_0} D_j).$ We then note some ways that this result can and cannot be generalized, and some related questions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源