论文标题
电荷密度波
Conformality of Charge Density Wave
论文作者
论文摘要
在2D系统中不断发现新的量子现象。特别是,电荷密度波(CDW)具有具有宏观波函数(顺序参数)的量子晶体方面,因此与量子液体不同(超导液体,量子霍尔液体$^3 $ he,$^4 $ He),新的基础状态,例如supersolid and supersolid andMoiré固体。但是,由于它们的量子方面,很难描述这些状态,因此仍然没有理论可以以统一的方式来解释CDW阶段。描述量子晶体的最佳方法似乎是一种允许局部变形(波特性)并保留局部角度(晶体特性)的共形变换。 在这里,我们提出了典型的2D CDW材料过渡金属二进制基因生成剂(mx $ _2 $)中2D CDW相的统一形式描述。我们发现,可以通过CDW WaveVector的离散的保形转换来精美地解释MX $ _2 $中的不相差CDW阶段。这种组合性是由于CDW与MX $ _2 $ lattice的可相称性。换句话说,谐波函数的干扰会引起整合性。 使用这种新的保质配方,我们解释了1 $ t $ -tas $ _2 $($ \ \ sqrt {13} \ times \ sqrt {13} $结构),2 $ h $ h $ -tase $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _sqrt {9} sqrt {9} sqrt, tase $ _2 $ thin Film($ \ sqrt {7} \ times \ sqrt {7} $ struction)中新的实验性近均匀阶段的起源。 从某种意义上说,这种理论非常简单,它仅包含脱位,并包括像量子厅液体一样丰富的物理学。这种新的描述将扩大我们对量子晶体的看法。
New quantum phenomena are continuously being discovered in 2D systems. In particular, the charge density wave (CDW) has the aspect of a quantum crystal with a macroscopic wave function (order parameter), so unlike quantum liquids (superconductivity, quantum Hall liquids $^3$He, $^4$He), new ground states such as supersolid and Moiré solids can be expected. However, it is difficult to describe these states because of their quantum aspect, hence there is still no theory that can explain CDW phases in a unified way. The best way to describe a quantum crystal seems to be a conformal transformation that allows local deformation (wave properties) and preserves local angles (crystal properties). Here, we propose a unifying conformal description of 2D CDW phases in the typical 2D CDW material transition metal dichalcogenides (MX$_2$). We discover that the discommensurate CDW phases in MX$_2$ can be explained beautifully by a discrete conformal transformation of CDW wavevectors. This conformality is due to commensurability of CDW with the MX$_2$ lattice. In other words, interference of harmonic wavefunction induces conformality. Using this new conformal formulation, we explain experimental nearly-commensurate/stripe/T CDW phases in 1$T$-TaS$_2$ ($\sqrt{13}\times\sqrt{13}$ structure), 2$H$-TaSe$_2$ ($\sqrt{9}\times\sqrt{9}$ structure), and explain the origin of a new experimental nearly-commensurate phase in TaSe$_2$ thin-film ($\sqrt{7}\times\sqrt{7}$ structure). This theory is very simple in the sense that it includes only discommensuration and comprises physics as rich as quantum Hall liquids. This new description will broaden our perspective of quantum crystals.