论文标题

基于$(α,β,γ)$加权wigner-yanase-dyson偏斜信息的总和不确定性关系

Sum uncertainty relations based on $(α,β,γ)$ weighted Wigner-Yanase-Dyson skew information

论文作者

Xu, Cong, Wu, Zhaoqi, Fei, Shao-Ming

论文摘要

我们介绍了($α,β,γ$)加权Wigner-yanase-dyson(($α,β,γ$)WWYD)偏斜信息和($α,β,γ$)修改的加权Wigner-yanase-dyson((($α,β,β,β,β,γ$)mwwyd)。我们探讨了基于($α,β,γ$)WWYD偏斜信息的任意$ n $互不交流可观察力的任意$ n $相互不确定性的总和不确定性关系。得出了一系列不确定性不平等。我们以详细的示例显示了我们的结果涵盖并根据原始的Wigner-Yanase(WY)偏斜信息改进了先前的结果。最后,我们根据($α,β,γ$)MWWYD偏斜信息建立了新的总和不确定性关系。

We introduce ($α,β,γ$) weighted Wigner-Yanase-Dyson (($α,β,γ$) WWYD) skew information and ($α,β,γ$) modified weighted Wigner-Yanase-Dyson (($α,β,γ$) MWWYD) skew information. We explore the sum uncertainty relations for arbitrary $N$ mutually noncommutative observables based on ($α,β,γ$) WWYD skew information. A series of uncertainty inequalities are derived. We show by detailed example that our results cover and improve the previous ones based on the original Wigner-Yanase (WY) skew information. Finally, we establish new sum uncertainty relations in terms of the ($α,β,γ$) MWWYD skew information for arbitrary $N$ quantum channels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源