论文标题
卷积重量的SVD:CNN可解释性框架
The SVD of Convolutional Weights: A CNN Interpretability Framework
论文作者
论文摘要
用于图像分类的深神经网络通常使用卷积过滤器来提取区分特征,然后再将其传递到线性分类器。大多数可解释性文献都集中在为卷积过滤器提供语义含义,以解释模型的推理过程,并确认其从输入域中使用相关信息。可以通过使用单数值分解分解其重量矩阵来研究完全连接的层,实际上研究每个矩阵中的行之间的相关性以发现地图的动力学。在这项工作中,我们为卷积层的重量张量定义了一个奇异的值分解,该分解提供了对过滤器之间的相关性的类似理解,从而揭示了卷积图的动力学。我们使用随机矩阵理论中的最新结果来验证我们的定义。通过在图像分类网络的线性层上应用分解,我们建议一个框架,可以使用HyperGraphs应用可解释性方法以模型类别分离。我们没有寻找激活来解释网络,而是使用每个线性层具有最大相应奇异值的单数向量来识别对网络最重要的特征。我们用示例说明了我们的方法,并介绍了本研究的分析工具DeepDataProfiler库。
Deep neural networks used for image classification often use convolutional filters to extract distinguishing features before passing them to a linear classifier. Most interpretability literature focuses on providing semantic meaning to convolutional filters to explain a model's reasoning process and confirm its use of relevant information from the input domain. Fully connected layers can be studied by decomposing their weight matrices using a singular value decomposition, in effect studying the correlations between the rows in each matrix to discover the dynamics of the map. In this work we define a singular value decomposition for the weight tensor of a convolutional layer, which provides an analogous understanding of the correlations between filters, exposing the dynamics of the convolutional map. We validate our definition using recent results in random matrix theory. By applying the decomposition across the linear layers of an image classification network we suggest a framework against which interpretability methods might be applied using hypergraphs to model class separation. Rather than looking to the activations to explain the network, we use the singular vectors with the greatest corresponding singular values for each linear layer to identify those features most important to the network. We illustrate our approach with examples and introduce the DeepDataProfiler library, the analysis tool used for this study.