论文标题

通过粒子群优化和并行处理加速子空间学习机

Acceleration of Subspace Learning Machine via Particle Swarm Optimization and Parallel Processing

论文作者

Fu, Hongyu, Yang, Yijing, Liu, Yuhuai, Lin, Joseph, Harrison, Ethan, Mishra, Vinod K., Kuo, C. -C. Jay

论文摘要

基于决策树(DT)的分类和回归思想,最近提议在一般分类和回归任务中提供更高的性能。它的性能提高以较高的计算复杂性为代价。在这项工作中,我们研究了两种加速SLM的方法。首先,我们采用粒子群优化(PSO)算法来加快对判别维度的搜索,该维度表示为电流尺寸的线性组合。线性组合中最佳权重的搜索在计算上很重。它是通过原始SLM中的概率搜索来完成的。 PSO加速SLM需要次数少10-20倍。其次,我们利用SLM实现中的并行处理。实验结果表明,加速的SLM方法在训练时间内达到577的速度系数,同时保持了原始SLM的可比分类/回归性能。

Built upon the decision tree (DT) classification and regression idea, the subspace learning machine (SLM) has been recently proposed to offer higher performance in general classification and regression tasks. Its performance improvement is reached at the expense of higher computational complexity. In this work, we investigate two ways to accelerate SLM. First, we adopt the particle swarm optimization (PSO) algorithm to speed up the search of a discriminant dimension that is expressed as a linear combination of current dimensions. The search of optimal weights in the linear combination is computationally heavy. It is accomplished by probabilistic search in original SLM. The acceleration of SLM by PSO requires 10-20 times fewer iterations. Second, we leverage parallel processing in the SLM implementation. Experimental results show that the accelerated SLM method achieves a speed up factor of 577 in training time while maintaining comparable classification/regression performance of original SLM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源