论文标题

耦合的KDV-KDV系统的非均匀边界值问题在半线上构成

Non-homogeneous boundary value problems for coupled KdV-KdV systems posed on the half line

论文作者

Li, Shenghao, Chen, Min, Yang, Xin, Zhang, Bing-Yu

论文摘要

在本文中,我们研究了半行$ \ mathbb {r}^+ $在非均匀边界条件上的耦合kdv-kdv系统的初始符合性问题:\ begin {equination*} \ left \ left \ left \ leet \ okit u_t+v_x+u_x+v_ {xxx} = 0,\ quad v_t+u_x+(vu)_x+u_ {xxx} = 0,\ quad u(x,0)= ϕ(x),\ quad v(x,0)=ψ(x),\ quad u(0,t)= h_1(t),\ quad v(0,t)= h_2(t),\ quad v_x(0,t)= h_3(t),\ end \ end {array} \ right。 \ qquad x,\,t> 0。 \ end {equation*}表明,该问题在$ h^s(\ Mathbb {r}^+)中置于无条件的无条件范围内,$ s> - \ frac34 $具有初始data $ in $ h^s in $ h^s n $ h^s(\ frac34 $) h^{s}(\ mathbb {r}^+)$和边界数据$(h_1,h_2,h_3)$ in $ h^{\ frac {\ frac {s+1} {3}}}}}}}}(\ mathbb {r}^+times h^{\ frac {s+1} {3}}}(\ mathbb {r}^+)\ times h^{\ frac {s} {3}}}}}(\ mathbb {r}^+)$。本文中开发的方法也可以应用于一半线上提出的更通用的KDV-KDV系统。

In this article, we study an initial-boundary-value problem of a coupled KdV-KdV system on the half line $ \mathbb{R}^+ $ with non-homogeneous boundary conditions: \begin{equation*} \left\{ \begin{array}{l} u_t+v_x+u u_x+v_{xxx}=0, \quad v_t+u_x+(vu)_x+u_{xxx}=0, \quad u(x,0)=ϕ(x),\quad v(x,0)=ψ(x), \quad u(0,t)=h_1(t),\quad v(0,t)=h_2(t),\quad v_x(0,t)=h_3(t), \end{array} \right. \qquad x,\,t>0. \end{equation*} It is shown that the problem is locally unconditionally well-posed in $H^s(\mathbb{R}^+)\times H^s(\mathbb{R}^+)$ for $s> -\frac34 $ with initial data $(ϕ,ψ)$ in $H^s(\mathbb{R}^+)\times H^{s}(\mathbb{R}^+)$ and boundary data $(h_1,h_2,h_3) $ in $H^{\frac{s+1}{3}}(\mathbb{R}^+)\times H^{\frac{s+1}{3}}(\mathbb{R}^+)\times H^{\frac{s}{3}}(\mathbb{R}^+)$. The approach developed in this paper can also be applied to study more general KdV-KdV systems posed on the half line.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源