论文标题
谐波图从强大可整流空间到普通球的谐波图(1)$ space
Dirichlet problem for harmonic maps from strongly rectifiable spaces into regular balls in $\CAT(1)$ spaces
论文作者
论文摘要
在本说明中,我们研究了谐波地图的Dirichlet问题,从强大的可校正空间到$ \ cat(1)$空间中的常规球。在此设置下,我们证明了Korevaar-Schoen Energy可以承认独特的最小化器。
In this note, we study the Dirichlet problem for harmonic maps from strongly rectifiable spaces into regular balls in $\CAT(1)$ space. Under the setting, we prove that the Korevaar-Schoen energy admits a unique minimizer.