论文标题
在非常规PTTE1.75单层中,大型自旋霍尔电导率和出色的氢进化反应活性
Large spin Hall conductivity and excellent hydrogen evolution reaction activity in unconventional PtTe1.75 monolayer
论文作者
论文摘要
由于潜在的应用,二维(2D)材料引起了很多关注。在这项工作中,我们提出,基于第一原则计算,(2 $ \ times $ 2)图案ptte $ _2 $单层与订购良好的TE空位(PTTE $ _ {1.75} $)形成的Kagome晶格具有Kagome晶格(ptte $ _ {1.75} $),可容纳大型自旋电导率(SHC)和出色的氢气进化反应(她)的活动(她的出色的氢化反应)。非常规性依赖于无SIC的最高价乐队的$ A1@1b $ band代表(BR)。大SHC来自TE空位引起的非中心对称结构中的Rashba自旋轨道耦合(SOC)。即使它具有金属SOC频段结构,$ \ mathbb z_2 $不变性的定义很明确,这是由于直接带隙的存在,并且被计算为非平凡。计算出的SHC在Fermi级别($ e_f $)处于1.25 $ \ times 10^3 \ frac {\ hbar} {e}(ω〜cm)^{ - 1} $。通过将化学势从$ e_f-0.3 $调整到$ e_f+0.3 $ eV,它从$ -1.2 \ times 10^3 $到3.1 $ \ times 10^3 \ frac {\ hbar} {\ hbar} {e} {e} {e}(ω此外,我们还发现图案单层中的TE空缺可以引起她的精彩活动。我们的结果不仅为搜索具有较大SHC的2D材料提供了一个新的想法,即通过在大型SOC系统中引入反演对称性破坏空缺,而且还提供了可行的系统,具有可调的SHC(通过施加门电压)和出色的活动。
Two-dimensional (2D) materials have gained lots of attention due to the potential applications. In this work, we propose that based on first-principles calculations, the (2$\times$2) patterned PtTe$_2$ monolayer with kagome lattice formed by the well-ordered Te vacancy (PtTe$_{1.75}$) hosts large spin Hall conductivity (SHC) and excellent hydrogen evolution reaction (HER) activity. The unconventional nature relies on the $A1@1b$ band representation (BR) of the highest valence band without SOC. The large SHC comes from the Rashba spin-orbit coupling (SOC) in the noncentrosymmetric structure induced by the Te vacancy. Even though it has a metallic SOC band structure, the $\mathbb Z_2$ invariant is well defined due to the existence of the direct band gap and is computed to be nontrivial. The calculated SHC is as large as 1.25$\times 10^3 \frac{\hbar}{e} (Ω~cm)^{-1}$ at the Fermi level ($E_F$). By tuning the chemical potential from $E_F-0.3$ to $E_F+0.3$ eV, it varies rapidly and monotonically from $-1.2\times 10^3$ to 3.1$\times 10^3 \frac{\hbar}{e} (Ω~cm)^{-1}$. In addition, we also find the Te vacancy in the patterned monolayer can induce excellent HER activity. Our results not only offer a new idea to search 2D materials with large SHC, i.e., by introducing inversion-symmetry breaking vacancies in large SOC systems, but also provide a feasible system with tunable SHC (by applying gate voltage) and excellent HER activity.