论文标题

具有神经分层的辩护建议

Debiased Recommendation with Neural Stratification

论文作者

Dai, Quanyu, Dong, Zhenhua, Chen, Xu

论文摘要

Debias的推荐模型最近引起了学术和行业社区的越来越多的关注。现有模型主要基于反向倾向得分(IPS)的技术。但是,在建议域中,鉴于观察到的用户项目暴露数据的稀疏性质和嘈杂性的性质,IP很难估算。为了减轻这个问题,在本文中,我们假设用户偏好可以由少量的潜在因素主导,并建议通过增加曝光密度来将用户聚集以计算更准确的IPS。基本上,这种方法与应用统计的分层模型的精神相似。但是,与以前的启发式分层策略不同,我们通过向用户呈现低级嵌入的用户来学习群集标准,这是建议模型中的用户表示未来。最后,我们发现我们的模型与前两种类型的Debias推荐模型有牢固的联系。我们基于实际数据集进行了广泛的实验,以证明该方法的有效性。

Debiased recommender models have recently attracted increasing attention from the academic and industry communities. Existing models are mostly based on the technique of inverse propensity score (IPS). However, in the recommendation domain, IPS can be hard to estimate given the sparse and noisy nature of the observed user-item exposure data. To alleviate this problem, in this paper, we assume that the user preference can be dominated by a small amount of latent factors, and propose to cluster the users for computing more accurate IPS via increasing the exposure densities. Basically, such method is similar with the spirit of stratification models in applied statistics. However, unlike previous heuristic stratification strategy, we learn the cluster criterion by presenting the users with low ranking embeddings, which are future shared with the user representations in the recommender model. At last, we find that our model has strong connections with the previous two types of debiased recommender models. We conduct extensive experiments based on real-world datasets to demonstrate the effectiveness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源