论文标题

跨尺度注意力指导的克罗恩病诊断的多个实体学习与病理图像的诊断

Cross-scale Attention Guided Multi-instance Learning for Crohn's Disease Diagnosis with Pathological Images

论文作者

Deng, Ruining, Cui, Can, Remedios, Lucas W., Bao, Shunxing, Womick, R. Michael, Chiron, Sophie, Li, Jia, Roland, Joseph T., Lau, Ken S., Liu, Qi, Wilson, Keith T., Wang, Yaohong, Coburn, Lori A., Landman, Bennett A., Huo, Yuankai

论文摘要

多实施学习(MIL)被广泛用于对病理整体幻灯片图像(WSIS)的计算机辅助解释,以解决缺乏像素或贴片的注释。通常,这种方法直接应用“自然图像驱动”的MIL算法,该算法忽略了WSI的多尺度(即金字塔)性质。现成的MIL算法通常部署在单个WSIS(例如20倍放大倍率)上,而人类病理学家通常以多尺度的方式(例如,通过放大不同:不同的:不同:不同:不同的:不同:不同:在这项研究中,我们提出了一种新型的跨尺度注意机制,以明确地将尺度间相互作用汇总到单个MIL网络的克罗恩病(CD)(CD),这是炎症性肠病的一种形式。本文的贡献是两个方面:(1)提出了一种跨尺度注意机制来汇总不同分辨率和多尺度相互作用的特征; (2)生成差异多尺度注意可视化,以定位可解释的病变模式。通过训练来自20名CD患者的约25万H&e染色的升天(AC)斑块,在不同尺度上训练30个健康对照样品,我们的方法在曲线(AUC)分数下达到了0.8924的较高面积,与基线模型相比。官方实施可在https://github.com/hrlblab/cs-mil上公开获得。

Multi-instance learning (MIL) is widely used in the computer-aided interpretation of pathological Whole Slide Images (WSIs) to solve the lack of pixel-wise or patch-wise annotations. Often, this approach directly applies "natural image driven" MIL algorithms which overlook the multi-scale (i.e. pyramidal) nature of WSIs. Off-the-shelf MIL algorithms are typically deployed on a single-scale of WSIs (e.g., 20x magnification), while human pathologists usually aggregate the global and local patterns in a multi-scale manner (e.g., by zooming in and out between different magnifications). In this study, we propose a novel cross-scale attention mechanism to explicitly aggregate inter-scale interactions into a single MIL network for Crohn's Disease (CD), which is a form of inflammatory bowel disease. The contribution of this paper is two-fold: (1) a cross-scale attention mechanism is proposed to aggregate features from different resolutions with multi-scale interaction; and (2) differential multi-scale attention visualizations are generated to localize explainable lesion patterns. By training ~250,000 H&E-stained Ascending Colon (AC) patches from 20 CD patient and 30 healthy control samples at different scales, our approach achieved a superior Area under the Curve (AUC) score of 0.8924 compared with baseline models. The official implementation is publicly available at https://github.com/hrlblab/CS-MIL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源