论文标题
在城市环境中长期发光雷达本地化的范围图像的在线杆细分
Online Pole Segmentation on Range Images for Long-term LiDAR Localization in Urban Environments
论文作者
论文摘要
强大而准确的本地化是移动自主系统的基本要求。杆状物体(例如交通标志,杆子和灯)由于其当地独特性和长期稳定性,经常使用城市环境定位的地标。在本文中,我们基于在线运行并且几乎没有计算需求的几何特征,提出了一种新颖,准确,快速的杆提取方法。我们的方法直接对3D LIDAR扫描产生的范围图像执行所有计算,该图像避免了显式处理3D点云,并为每次扫描启用快速提取。我们进一步使用提取的杆子作为伪标签来训练深层神经网络,以进行基于图像的极点分段。我们测试了我们的几何和基于学习的极点提取方法,用于在不同的数据集上定位,并具有不同的激光扫描仪,路线和季节性变化。实验结果表明,我们的方法表现优于其他最先进的方法。此外,通过从多个数据集提取的伪极标签增强,我们基于学习的方法可以跨不同的数据集运行,并且与基于几何的方法相比,可以实现更好的本地化结果。我们向公众发布了杆数据集,以评估杆的性能以及我们的方法的实现。
Robust and accurate localization is a basic requirement for mobile autonomous systems. Pole-like objects, such as traffic signs, poles, and lamps are frequently used landmarks for localization in urban environments due to their local distinctiveness and long-term stability. In this paper, we present a novel, accurate, and fast pole extraction approach based on geometric features that runs online and has little computational demands. Our method performs all computations directly on range images generated from 3D LiDAR scans, which avoids processing 3D point clouds explicitly and enables fast pole extraction for each scan. We further use the extracted poles as pseudo labels to train a deep neural network for online range image-based pole segmentation. We test both our geometric and learning-based pole extraction methods for localization on different datasets with different LiDAR scanners, routes, and seasonal changes. The experimental results show that our methods outperform other state-of-the-art approaches. Moreover, boosted with pseudo pole labels extracted from multiple datasets, our learning-based method can run across different datasets and achieve even better localization results compared to our geometry-based method. We released our pole datasets to the public for evaluating the performance of pole extractors, as well as the implementation of our approach.