论文标题
射影空间中通用性超曲面补充的代数双曲线
Algebraic Hyperbolicity of Complements of Generic Hypersurfaces in Projective Spaces
论文作者
论文摘要
我们研究了p^n中非常一般程度$ 2N $ hypersurfaces的补充的代数双曲线。我们证明了这些补充的代数绿色 - 长石 - 朗格的猜想,在四分之一平面曲线的补充中,我们将特殊的基因座描述为flex和bitangengent线的结合。
We study the algebraic hyperbolicity of the complement of very general degree $2n$ hypersurfaces in P^n. We prove the Algebraic Green-Griffiths-Lang Conjecture for these complements, and in the case of the complement of a quartic plane curve, we completely characterize the exceptional locus as the union of the flex and bitangent lines.