论文标题

实体锚定ICD编码

Entity Anchored ICD Coding

论文作者

DeYoung, Jay, Shing, Han-Chin, Kong, Luyang, Winestock, Christopher, Shivade, Chaitanya

论文摘要

医疗编码是一项复杂的任务,需要将超过72,000个ICD代码的子集分配给患者的笔记。对这些任务的现代自然语言处理方法已受到输出空间的输入和大小的长度挑战。我们将模型输入限制在文档中发现的医疗实体周围的一个小窗口中。从这些本地上下文中,我们构建了ICD代码和实体的上下文化表示,并汇总这些表示形式以形成文档级预测。与现有的方法相反,该方法使用使用大小或训练中的代码固定的表示形式,我们通过用本地上下文编码代码描述来表示ICD代码。我们讨论适合在实践中部署编码系统的指标。我们表明,我们的方法优于标准和可部署措施的现有方法,包括在稀有和看不见的代码上的性能。

Medical coding is a complex task, requiring assignment of a subset of over 72,000 ICD codes to a patient's notes. Modern natural language processing approaches to these tasks have been challenged by the length of the input and size of the output space. We limit our model inputs to a small window around medical entities found in our documents. From those local contexts, we build contextualized representations of both ICD codes and entities, and aggregate over these representations to form document-level predictions. In contrast to existing methods which use a representation fixed either in size or by codes seen in training, we represent ICD codes by encoding the code description with local context. We discuss metrics appropriate to deploying coding systems in practice. We show that our approach is superior to existing methods in both standard and deployable measures, including performance on rare and unseen codes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源