论文标题
气味表示的几何框架
A Geometric Framework for Odor Representation
论文作者
论文摘要
我们使用平滑的流形和滑轮理论提出了一个通用的嗅觉表示和可塑性的理论框架,以通过分布式神经计算来描述分类气味学习。从嗅觉系统的所有可能输入的空间开始,我们为气味学习开发了动态模型,该模型在感知空间中达到高潮,在感知空间中,在该空间中,通过经验层次构建了分类的气味表示形式,表现出统计上适当的结果区域,并在统计上适当的结果区域和更宽敞的身份之间的明确关系,可以分配给定的异味。该模型反映了在生理受体反应概况中观察到的气味剂之间基于抽样的物理相似关系,以及可获得的,与学习的感知相似性关系可以在行为上测量的气味之间,并定义了它们之间的关系。个人培训和经验会产生相应的更复杂的气味识别能力。由于这些气味表示是根据经验构成的,并取决于局部的分布式可塑性机制,因此固定曲率的几何形状不足以描述系统的能力。该生成框架还包含假设,解释了胶体后电路中的代表性漂移以及感知相似性关系的上下文依赖性重新映射。
We present a generalized theoretical framework for olfactory representation and plasticity, using the theory of smooth manifolds and sheaves to depict categorical odor learning via distributed neural computation. Beginning with the space of all possible inputs to the olfactory system, we develop a dynamic model for odor learning that culminates in a perceptual space in which categorical odor representations are hierarchically constructed through experience, exhibiting statistically appropriate consequential regions and clear relationships between the broader and narrower identities to which a given odor might be assigned. The model reflects both the sampling-based physical similarity relationships among odorants, as observed in physiological receptor response profiles, and the acquired, learning-dependent perceptual similarity relationships among odors that can be measured behaviorally, and defines the relationship between them. Individual training and experience generates correspondingly more sophisticated odor identification capabilities. Because these odor representations are constructed from experience and depend on local, distributed plasticity mechanisms, geometries that fix curvature are insufficient to describe the capabilities of the system. This generative framework also encompasses hypotheses explaining representational drift in postbulbar circuits and the context-dependent remapping of perceptual similarity relationships.