论文标题
蒙特卡洛研究在几何限制和单轴菌株下的天际稳定
Monte Carlo studies of skyrmion stabilization under geometric confinement and uniaxial strain
论文作者
论文摘要
纳米域中的天际序列的几何限制(GC)在天际稳定中起着至关重要的作用。这种限制效应降低了天空形成所需的磁场,并且与应用机械应力密切相关。但是,GC的机制尚不清楚,并且仍然存在争议。在这里,我们从数值上研究了GC对天际稳定的影响,发现零dzyaloshinskii-moriya相互作用(DMI)耦合常数施加在小薄板的边界表面上会导致限制效应,从而稳定低档区域的Skyrmions。此外,狭窄的天际距离被平行于板的拉伸菌株进一步稳定,而天空相延伸至低温区域。这种稳定是由于晶格变形引起的大量各向异性DMI偶联常数。我们的仿真数据在质上与报道的有关Skyrmion稳定的实验数据一致,该数据是由施加到手性磁铁薄板$ {\ rm cu_2oseo_3} $的薄板上的拉伸应变引起的。
Geometric confinement (GC) of skyrmions in nanodomains plays a crucial role in skyrmion stabilization. This confinement effect decreases the magnetic field necessary for skyrmion formation and is closely related to the applied mechanical stresses. However, the mechanism of GC is unclear and remains controversial. Here, we numerically study the effect of GC on skyrmion stabilization and find that zero Dzyaloshinskii-Moriya interaction (DMI) coupling constants imposed on the boundary surfaces of small thin plates cause confinement effects, stabilizing skyrmions in the low-field region. Moreover, the confined skyrmions are further stabilized by tensile strains parallel to the plate, and the skyrmion phase extends to the low-temperature region. This stabilization occurs due to the bulk anisotropic DMI coupling constant caused by lattice deformations. Our simulation data are qualitatively consistent with reported experimental data on skyrmion stabilization induced by tensile strains applied to a thin plate of the chiral magnet ${\rm Cu_2OSeO_3}$.