论文标题
SNR 0509-67.5的基于水力的MCMC分析揭示了仅流体不连续性的爆炸特性
A Hydro-Based MCMC Analysis of SNR 0509-67.5 Revealing the Explosion Properties from Fluid Discontinuities Alone
论文作者
论文摘要
使用{\ sim}相隔10年的超新星残留0509-67.5的HST窄带Hα图像,我们测量了231个边缘位置的正向休克(FS)适当的运动(PMS)。平均冲击半径和速度为3.66 {\ pm} 0.036 PC和6315 {\ pm} 310 km S {^{ - 1}}。流体动力模拟,作为相似解决方案的重铸,为残余物扩展到统一的环境介质提供了模型。这些与马尔可夫链蒙特卡洛(MCMC)分析结合在一起,以确定受FS测量的约束的爆炸参数。对于特定的全球参数,MCMC后分布产生的年龄为315.5 {\ pm} 1.8 yr,这是一个动力爆炸中心,位于5H09M31S.16S -67 {^\ circ} 31 {^\ prime} 17.1 {^^\ prime} 17.1 {^^{^^{^\ prime \ prime}}和每个中等元素。 {\ times} 10 {^{ - 25}} g cm {^{ - 3}}。我们可以使用H $α$ Imagess检测到与LMC的速度相对应的恒星PM或更多的LMC速度或更多。残留物中的五个恒星显示可测量的PM,但似乎没有一个从中心移动,其中包括一个突出的红色星星4.6 {^{\ prime \ prime}}。使用Coronal [Fe XIV]λ5303排放作为反向冲击位置的代理,我们将爆炸能(对于4个压缩系数为4)限制为E =(1.30 {\ pm} 0.41){\ times} {\ times} 10 {^{51}} eRG,单独使用shock Kinematics。根据多个标准,强烈不利的压缩因子(7个或更多)是强烈不利的,认为在0509-67.5的Balmer冲击中效率低下的颗粒加速度。
Using HST narrow-band Hα images of supernova remnant 0509-67.5 taken {\sim}10 years apart, we measure the forward shock (FS) proper motions (PMs) at 231 rim locations. The average shock radius and velocity are 3.66 {\pm} 0.036 pc and 6315 {\pm} 310 km s{^{-1}}. Hydrodynamic simulations, recast as similarity solutions, provide models for the remnant's expansion into a uniform ambient medium. These are coupled to a Markov chain Monte Carlo (MCMC) analysis to determine explosion parameters, constrained by the FS measurements. For specific global parameters, the MCMC posterior distributions yield an age of 315.5 {\pm} 1.8 yr, a dynamical explosion center at 5h09m31s.16s -67{^\circ}31{^\prime}17.1{^{\prime\prime}} and ambient medium densities at each azimuth ranging from 3.7-8.0 {\times} 10{^{-25}} g cm{^{-3}}. We can detect stellar PMs corresponding to speeds in the LMC of 770 km s{^{-1}} or more using the H$α$ images. Five stars in the remnant show measurable PMs but none appear to be moving radially from the center, including a prominent red star 4.6{^{\prime\prime}} from the center. Using coronal [Fe XIV] λ5303 emission as a proxy for the reverse shock location, we constrain the explosion energy (for a compression factor of 4) to a value of E = (1.30 {\pm} 0.41) {\times} 10{^{51}} erg for the first time from shock kinematics alone. Higher compression factors (7 or more) are strongly disfavored based on multiple criteria, arguing for inefficient particle acceleration in the Balmer shocks of 0509-67.5.