论文标题
QuickSkill:在线多人游戏中的新手技能估算
QuickSkill: Novice Skill Estimation in Online Multiplayer Games
论文作者
论文摘要
对接系统对于在线多人游戏中创建公平匹配至关重要,这直接影响玩家的满足感和游戏体验。大多数对接系统在很大程度上取决于对玩家游戏技能的精确估计来构建公平的游戏。但是,新手的技能等级通常是不准确的,因为当前的对接评级算法需要大量游戏来学习新玩家的真正技能。在早期阶段使用这些不可靠的技能分数通常会导致团队绩效方面的差异,这会导致负面的游戏体验。这被称为对接评级算法的“冷启动”问题。 为了克服这个难题,本文提出了QuickSkill,这是一个基于深度学习的新手技能估计框架,以快速探究在线多人游戏中新玩家的能力。 QuickSkill提取了玩家最初的几款游戏中的顺序性能功能,以通过专用的神经网络来预测他/她未来的技能评级,从而在玩家的早期游戏阶段进行准确的技能估计。通过使用Quickskill进行对接,可以在最初的冷门时期大大改善游戏公平性。我们在离线和在线场景中都在流行的移动多人游戏中进行实验。使用两个现实世界中的匿名游戏数据集获得的结果表明,拟议的QuickSkill提供了对新手游戏技能的精确估计,从而导致团队技能差异明显降低和更好的玩家游戏体验。据我们所知,提议的QuickSkill是第一个解决传统技能评级算法的冷门问题的框架。
Matchmaking systems are vital for creating fair matches in online multiplayer games, which directly affects players' satisfactions and game experience. Most of the matchmaking systems largely rely on precise estimation of players' game skills to construct equitable games. However, the skill rating of a novice is usually inaccurate, as current matchmaking rating algorithms require considerable amount of games for learning the true skill of a new player. Using these unreliable skill scores at early stages for matchmaking usually leads to disparities in terms of team performance, which causes negative game experience. This is known as the ''cold-start'' problem for matchmaking rating algorithms. To overcome this conundrum, this paper proposes QuickSKill, a deep learning based novice skill estimation framework to quickly probe abilities of new players in online multiplayer games. QuickSKill extracts sequential performance features from initial few games of a player to predict his/her future skill rating with a dedicated neural network, thus delivering accurate skill estimation at the player's early game stage. By employing QuickSKill for matchmaking, game fairness can be dramatically improved in the initial cold-start period. We conduct experiments in a popular mobile multiplayer game in both offline and online scenarios. Results obtained with two real-world anonymized gaming datasets demonstrate that proposed QuickSKill delivers precise estimation of game skills for novices, leading to significantly lower team skill disparities and better player game experience. To the best of our knowledge, proposed QuickSKill is the first framework that tackles the cold-start problem for traditional skill rating algorithms.