论文标题
伪 - 欧几里得空间中的扭曲产品超曲面
Warped product hypersurfaces in the pseudo-Euclidean space
论文作者
论文摘要
我们研究伪欧亚人空间中的高空曲面$ \ mathbb {e}^{n+1} _s $,它们作为$ 1 $二维基础的扭曲产物,具有$(n-1)$ - $(n-1)$ - 恒定分段曲率的差异。我们表明它们要么具有恒定的截面曲率,要么将其包含在旋转超表面中。因此,我们首先定义伪欧亚人空间中的旋转超曲面。
We study hypersurfaces in the pseudo-Euclidean space $\mathbb{E}^{n+1}_s$, which write as a warped product of a $1$-dimensional base with an $(n-1)$-manifold of constant sectional curvature. We show that either they have constant sectional curvature or they are contained in a rotational hypersurface. Therefore, we first define rotational hypersurfaces in the pseudo-Euclidean space.