论文标题

伪 - 欧几里得空间中的扭曲产品超曲面

Warped product hypersurfaces in the pseudo-Euclidean space

论文作者

Moruz, Marilena

论文摘要

我们研究伪欧亚人空间中的高空曲面$ \ mathbb {e}^{n+1} _s $,它们作为$ 1 $二维基础的扭曲产物,具有$(n-1)$ - $(n-1)$ - 恒定分段曲率的差异。我们表明它们要么具有恒定的截面曲率,要么将其包含在旋转超表面中。因此,我们首先定义伪欧亚人空间中的旋转超曲面。

We study hypersurfaces in the pseudo-Euclidean space $\mathbb{E}^{n+1}_s$, which write as a warped product of a $1$-dimensional base with an $(n-1)$-manifold of constant sectional curvature. We show that either they have constant sectional curvature or they are contained in a rotational hypersurface. Therefore, we first define rotational hypersurfaces in the pseudo-Euclidean space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源