论文标题
最小康托尔系统的拓扑加速
Topological Speedups For Minimal Cantor Systems
论文作者
论文摘要
在本文中,我们研究了拓扑类别中动态系统的加速。具体来说,我们表征了坎托空间上一个最小同构的何时是另一个速度的加速。我们继续为强速度提供一个特征,即,当跳跃功能最多有一个不连续点时。这些结果提供了Arnoux,Ornstein和Weiss的测量结果的拓扑版本,并且与佐丹奴,Putnam和Skau的轨道等效性的特征密切相关。
In this paper we study speedups of dynamical systems in the topological category. Specifically, we characterize when one minimal homeomorphism on a Cantor space is the speedup of another. We go on to provide a characterization for strong speedups, i.e., when the jump function has at most one point of discontinuity. These results provide topological versions of the measure-theoretic results of Arnoux, Ornstein and Weiss, and are closely related to Giordano, Putnam and Skau's characterization of orbit equivalence for minimal Cantor systems.