论文标题

人工神经网络可以告诉我们有关人类语言获取的哪些

What Artificial Neural Networks Can Tell Us About Human Language Acquisition

论文作者

Warstadt, Alex, Bowman, Samuel R.

论文摘要

自然语言处理的机器学习快速进步有可能改变有关人类学习语言的辩论。但是,当前人工学习者和人类的学习环境和偏见以削弱从学习模拟中获得的证据的影响的方式分歧。例如,当今最有效的神经语言模型接受了典型儿童可用的语言数据量的大约一千倍。为了增加计算模型的可学习性结果的相关性,我们需要培训模型学习者,而没有比人类具有显着优势的学习者。如果合适的模型成功地获取了一些目标语言知识,则可以提供一个概念证明,即在假设的人类学习场景中可以学习目标。合理的模型学习者将使我们能够进行实验操作,从而对学习环境中的变量进行因果推断,并严格测试史密斯风格的贫困主张,主张根据有关可学习性的猜测,主张对人类的先天语言知识。由于实用和道德的考虑因素,人类受试者将永远无法实现可比的实验,从而使模型学习者成为必不可少的资源。到目前为止,试图剥夺当前模型的不公平优势获得了关键语法行为(例如可接受性判断)的亚人类结果。但是,在我们可以合理地得出结论,语言学习需要比当前模型所拥有的更多的特定领域知识,我们必须首先以多模式刺激和多代理交互的形式探索非语言意见,以使我们的学习者从有限的语言投入中更有效地学习。

Rapid progress in machine learning for natural language processing has the potential to transform debates about how humans learn language. However, the learning environments and biases of current artificial learners and humans diverge in ways that weaken the impact of the evidence obtained from learning simulations. For example, today's most effective neural language models are trained on roughly one thousand times the amount of linguistic data available to a typical child. To increase the relevance of learnability results from computational models, we need to train model learners without significant advantages over humans. If an appropriate model successfully acquires some target linguistic knowledge, it can provide a proof of concept that the target is learnable in a hypothesized human learning scenario. Plausible model learners will enable us to carry out experimental manipulations to make causal inferences about variables in the learning environment, and to rigorously test poverty-of-the-stimulus-style claims arguing for innate linguistic knowledge in humans on the basis of speculations about learnability. Comparable experiments will never be possible with human subjects due to practical and ethical considerations, making model learners an indispensable resource. So far, attempts to deprive current models of unfair advantages obtain sub-human results for key grammatical behaviors such as acceptability judgments. But before we can justifiably conclude that language learning requires more prior domain-specific knowledge than current models possess, we must first explore non-linguistic inputs in the form of multimodal stimuli and multi-agent interaction as ways to make our learners more efficient at learning from limited linguistic input.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源