论文标题

脑形形态自适应网络,用于交互式信息访问系统中的满意度建模

Brain Topography Adaptive Network for Satisfaction Modeling in Interactive Information Access System

论文作者

Ye, Ziyi, Xie, Xiaohui, Liu, Yiqun, Wang, Zhihong, Chen, Xuesong, Zhang, Min, Ma, Shaoping

论文摘要

随着网络上信息的增长,大多数用户在日常生活中都严重依赖信息访问系统(例如搜索引擎,推荐系统等)。在此过程中,建模用户的满意度状态在改善其系统的经验中起着重要的作用。在本文中,我们旨在探讨使用脑电图(EEG)信号在交互式信息访问系统设计中进行满意建模的好处。与现有的EEG分类任务不同,满意度的出现涉及多种大脑功能,例如唤醒,原型性和评估,这些功能与不同的大脑地形区域有关。因此,对用户满意度进行建模为现有解决方案带来了巨大挑战。为了应对这一挑战,我们提出了BTA,BTA是一个具有多中心编码模块和空间注意机制模块的大脑形态自适应网络,以捕获不同空间距离的认知连接性。我们探讨了BTA在两个流行的信息访问方案(即搜索和建议)中对满意度建模的有效性。在两个现实世界数据集上进行的广泛实验验证了在满意度建模中引入大脑形态自适应策略的有效性。此外,我们还基于从搜索和建议方案中的大脑信号推断出的满意度来进行搜索结果重新级别的任务和视频评级预测任务。实验结果表明,用BTA提取的大脑信号有助于改善交互式信息访问系统的性能。

With the growth of information on the Web, most users heavily rely on information access systems (e.g., search engines, recommender systems, etc.) in their daily lives. During this procedure, modeling users' satisfaction status plays an essential part in improving their experiences with the systems. In this paper, we aim to explore the benefits of using Electroencephalography (EEG) signals for satisfaction modeling in interactive information access system design. Different from existing EEG classification tasks, the arisen of satisfaction involves multiple brain functions, such as arousal, prototypicality, and appraisals, which are related to different brain topographical areas. Thus modeling user satisfaction raises great challenges to existing solutions. To address this challenge, we propose BTA, a Brain Topography Adaptive network with a multi-centrality encoding module and a spatial attention mechanism module to capture cognitive connectivities in different spatial distances. We explore the effectiveness of BTA for satisfaction modeling in two popular information access scenarios, i.e., search and recommendation. Extensive experiments on two real-world datasets verify the effectiveness of introducing brain topography adaptive strategy in satisfaction modeling. Furthermore, we also conduct search result re-ranking task and video rating prediction task based on the satisfaction inferred from brain signals on search and recommendation scenarios, respectively. Experimental results show that brain signals extracted with BTA help improve the performance of interactive information access systems significantly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源