论文标题

在预算限制下寻找公平的分配

Finding Fair Allocations under Budget Constraints

论文作者

Barman, Siddharth, Khan, Arindam, Shyam, Sudarshan, Sreenivas, K. V. N.

论文摘要

我们研究了具有相同的增添估值但个人预算限制的代理商中不可分割的商品的公平分配。在这里,不可分割的商品(具有特定尺寸和价值)需要进行分配,以使分配给每个代理的捆绑包最多是代理商的预算。由于无嫉妒的分配不一定存在于不可分割的商品环境中,因此令人信服的放松(尤其是令人羡慕$ k $商品(EFK)的概念)近年来受到了极大的关注。在EFK分配中,每个代理商都更喜欢自己的捆绑包,而不是其他代理商的捆绑包,直到删除$ k $商品,并且代理人对慈善机构的嫉妒(对应于所有未分配商品的集合)。最近,Wu等。 (2021)表明,满足预算限制并最大化NASH社会福利的分配是$ 1/4 $ - 售价EF1。但是,确切的EFK分配的计算(甚至存在)仍然是一个有趣的开放问题。 我们通过提出一种简单,贪婪的多项式时间算法来取得显着的进步,该算法在预算限制下计算EF2分配。我们的算法结果意味着在这种公平的分裂环境中,EF2分配的普遍存在。算法的分析利用了嫉妒的复杂结构特性。有趣的是,同样的算法还为重要特殊情况提供了EF1保证。具体而言,我们解决了EF1分配的存在,以:(i)每种商品的价值与其大小成正比,(ii)所有商品的规模相同,或(iii)所有商品的价值相同。我们的EF2结果扩展到特定于代理的商品尺寸的设置。

We study the fair allocation of indivisible goods among agents with identical, additive valuations but individual budget constraints. Here, the indivisible goods--each with a specific size and value--need to be allocated such that the bundle assigned to each agent is of total size at most the agent's budget. Since envy-free allocations do not necessarily exist in the indivisible goods context, compelling relaxations--in particular, the notion of envy-freeness up to $k$ goods (EFk)--have received significant attention in recent years. In an EFk allocation, each agent prefers its own bundle over that of any other agent, up to the removal of $k$ goods, and the agents have similarly bounded envy against the charity (which corresponds to the set of all unallocated goods). Recently, Wu et al. (2021) showed that an allocation that satisfies the budget constraints and maximizes the Nash social welfare is $1/4$-approximately EF1. However, the computation (or even existence) of exact EFk allocations remained an intriguing open problem. We make notable progress towards this by proposing a simple, greedy, polynomial-time algorithm that computes EF2 allocations under budget constraints. Our algorithmic result implies the universal existence of EF2 allocations in this fair division context. The analysis of the algorithm exploits intricate structural properties of envy-freeness. Interestingly, the same algorithm also provides EF1 guarantees for important special cases. Specifically, we settle the existence of EF1 allocations for instances in which: (i) the value of each good is proportional to its size, (ii) all goods have the same size, or (iii) all the goods have the same value. Our EF2 result extends to the setting wherein the goods' sizes are agent specific.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源