论文标题

在流形的张量字段的径向基础近似:从操作员估计到流形学习

Radial basis approximation of tensor fields on manifolds: From operator estimation to manifold learning

论文作者

Harlim, John, Jiang, Shixiao Willing, Peoples, John Wilson

论文摘要

在本文中,我们研究了在欧几里得空间的封闭的riemannian submanifolds上定义的平滑张量场上的径向基函数(RBF)近似,该量张量构成了欧几里得空间的闭合量函数,并通过随机采样点云数据确定。 {本文中的公式利用了一个基本事实,即子序列上的协变量是在环境欧几里得空间中的定向衍生物投射到子曼群的切线空间。为了区分欧几里得公制的子曼群上的测试函数(或向量场),应用RBF插值来扩展环境欧几里得空间中的函数(或矢量场)。当歧管未知时,我们开发了一种改进的二阶局部SVD技术,用于估计歧管上的局部切线空间。当使用经典的非对称RBF公式用于解决拉普拉斯征收特征值问题时,我们发现,尽管可以通过足够大的数据来获得对前导光谱的准确估计,但这种近似值通常会产生无关的复杂值(或污染),因为真实的光谱是真实评估和阳性的。为了避免这样的问题,}我们引入了由适当的希尔伯特空间上的弱公式引起的laplacians的对称RBF离散近似。与非对称近似不同,该公式保证了非负实值的光谱和特征向量的正交性。从理论上讲,我们建立了Laplace-Beltrami操作员和Bochner Laplacian {对于对称配方}的融合的收敛,并在具有收敛速率的大数据的限制中。从数字上讲,我们为Laplace-Beltrami操作员和各种矢量拉普拉奇人(包括Bochner,Hodge和Lichnerowicz Laplacians)提供了支持的示例。

In this paper, we study the Radial Basis Function (RBF) approximation to differential operators on smooth tensor fields defined on closed Riemannian submanifolds of Euclidean space, identified by randomly sampled point cloud data. {The formulation in this paper leverages a fundamental fact that the covariant derivative on a submanifold is the projection of the directional derivative in the ambient Euclidean space onto the tangent space of the submanifold. To differentiate a test function (or vector field) on the submanifold with respect to the Euclidean metric, the RBF interpolation is applied to extend the function (or vector field) in the ambient Euclidean space. When the manifolds are unknown, we develop an improved second-order local SVD technique for estimating local tangent spaces on the manifold. When the classical pointwise non-symmetric RBF formulation is used to solve Laplacian eigenvalue problems, we found that while accurate estimation of the leading spectra can be obtained with large enough data, such an approximation often produces irrelevant complex-valued spectra (or pollution) as the true spectra are real-valued and positive. To avoid such an issue,} we introduce a symmetric RBF discrete approximation of the Laplacians induced by a weak formulation on appropriate Hilbert spaces. Unlike the non-symmetric approximation, this formulation guarantees non-negative real-valued spectra and the orthogonality of the eigenvectors. Theoretically, we establish the convergence of the eigenpairs of both the Laplace-Beltrami operator and Bochner Laplacian {for the symmetric formulation} in the limit of large data with convergence rates. Numerically, we provide supporting examples for approximations of the Laplace-Beltrami operator and various vector Laplacians, including the Bochner, Hodge, and Lichnerowicz Laplacians.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源