论文标题
在Assmus-型I型定理上,甚至是正式的自偶代码
On the Assmus--Mattson type theorem for Type I and even formally self-dual codes
论文作者
论文摘要
在本文中,我们给出了Assmus-Mattson Type定理,用于I型I型,甚至是正式的自偶代码。我们展示了这些代码的$ 1 $ - 戴斯尼格或$ 2 $ - 设计。作为推论,我们证明了一个自动$ 2 $ - $(16,6,8)$设计的独特性。
In the present paper, we give the Assmus--Mattson type theorem for near-extremal Type I and even formally self-dual codes. We show the existence of $1$-designs or $2$-designs for these codes. As a corollary, we prove the uniqueness of a self-orthogonal $2$-$(16,6,8)$ design.