论文标题

光谱函数非隔离部分的四面体方法计算

Converging tetrahedron method calculations for the nondissipative parts of spectral functions

论文作者

Ghim, Minsu, Park, Cheol-Hwan

论文摘要

固态物理学中的许多物理量是根据K空间求和计算的。对于光谱函数,可以将频率依赖性因子分解为能量支持的三角洲功能部分和非解剖性主值部分。对于此K空间总和的一个非常有用的方案是四面体方法。四面体方法已被广泛用于计算能量持续的三角洲功能部分的总和,例如介电函数的假想部分。另一方面,非隔离部分的相应四面体方法,例如介电函数的实际部分,并未使用太多。在本文中,我们解决了四面体方法中非隔离部分的技术困难,并提出了一种易于实施,稳定的方法来克服这些困难。我们通过计算铂的静态和动力学自旋电导率来证明我们的方法。我们的方法可以广泛应用于计算线性静电或动态电导率,电子的自我能量以及电动极化,仅举几例。

Many physical quantities in solid-state physics are calculated from k-space summation. For spectral functions, the frequency-dependent factor can be decomposed into the energy-conserving delta function part and the nondissipative principal value part. A very useful scheme for this k-space summation is the tetrahedron method. Tetrahedron methods have been widely used to calculate the summation of the energy-conserving delta function part such as the imaginary part of the dielectric function. On the other hand, the corresponding tetrahedron method for the nondissipative part such as the real part of the dielectric function has not been used much. In this paper, we address the technical difficulties in the tetrahedron method for the nondissipative part and present an easy-to-implement, stable method to overcome those difficulties. We demonstrate our method by calculating the static and dynamical spin Hall conductivity of platinum. Our method can be widely applied to calculate linear static or dynamical conductivity, self-energy of an electron, and electric polarizability, to name a few.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源