论文标题
通过平衡和gershgorin圆盘完美对齐的有效签名的图形采样
Efficient Signed Graph Sampling via Balancing & Gershgorin Disc Perfect Alignment
论文作者
论文摘要
图形信号处理(GSP)中的基本前提是,将目标信号的成对(反)相关性作为边缘权重以用于图形过滤。但是,现有的快速图抽样方案仅针对描述正相关的正图设计和测试。在本文中,我们表明,对于具有强固有抗相关的数据集,合适的图既包含正边缘和负边缘。作为响应,我们提出了一种以平衡签名图的概念为中心的线性时间签名的图形采样方法。具体而言,给定经验协方差数据矩阵$ \ bar {\ bf {c}} $,我们首先学习一个稀疏的逆矩阵(Graph laplacian)$ \ MATHCAL {l} $,与签名的Graph $ \ Mathcal $ \ Mathcal {g} $相对应。我们为平衡签名的图形$ \ Mathcal {g} _b $ - 近似$ \ Mathcal {g} $通过Edge Exge Exgement Exgmentation -AS Graph频率组件定义Laplacian $ \ Mathcal {L} _b $的特征向量。接下来,我们选择样本以将低通滤波器重建误差分为两个步骤最小化。我们首先对齐Laplacian $ \ Mathcal {l} _b $的所有Gershgorin Disc左端,最小的EigenValue $λ_{\ min}(\ Mathcal {l} _b)$通过相似性$ \ MATHCAL $ \ MATHCAL {L} ___ §^{ - 1} $,利用最近的线性代数定理,称为gershgorin disc perfect Alignment(GDPA)。然后,我们使用以前的快速gershgorin盘盘对齐采样(GDAS)方案对$ \ Mathcal {L} _p $执行采样。实验结果表明,我们签名的图形采样方法在各种数据集上明显优于现有的快速采样方案。
A basic premise in graph signal processing (GSP) is that a graph encoding pairwise (anti-)correlations of the targeted signal as edge weights is exploited for graph filtering. However, existing fast graph sampling schemes are designed and tested only for positive graphs describing positive correlations. In this paper, we show that for datasets with strong inherent anti-correlations, a suitable graph contains both positive and negative edge weights. In response, we propose a linear-time signed graph sampling method centered on the concept of balanced signed graphs. Specifically, given an empirical covariance data matrix $\bar{\bf{C}}$, we first learn a sparse inverse matrix (graph Laplacian) $\mathcal{L}$ corresponding to a signed graph $\mathcal{G}$. We define the eigenvectors of Laplacian $\mathcal{L}_B$ for a balanced signed graph $\mathcal{G}_B$ -- approximating $\mathcal{G}$ via edge weight augmentation -- as graph frequency components. Next, we choose samples to minimize the low-pass filter reconstruction error in two steps. We first align all Gershgorin disc left-ends of Laplacian $\mathcal{L}_B$ at smallest eigenvalue $λ_{\min}(\mathcal{L}_B)$ via similarity transform $\mathcal{L}_p = §\mathcal{L}_B §^{-1}$, leveraging a recent linear algebra theorem called Gershgorin disc perfect alignment (GDPA). We then perform sampling on $\mathcal{L}_p$ using a previous fast Gershgorin disc alignment sampling (GDAS) scheme. Experimental results show that our signed graph sampling method outperformed existing fast sampling schemes noticeably on various datasets.