论文标题

智能解决问题作为集成的分层增强学习

Intelligent problem-solving as integrated hierarchical reinforcement learning

论文作者

Eppe, Manfred, Gumbsch, Christian, Kerzel, Matthias, Nguyen, Phuong D. H., Butz, Martin V., Wermter, Stefan

论文摘要

根据认知心理学和相关学科,生物学剂中复杂的解决问题行为的发展取决于等级认知机制。分层增强学习是一种有前途的计算方法,最终可能会在人工代理和机器人中产生可比的解决问题的行为。但是,迄今为止,许多人类和非人类动物的解决问题能力显然优于人造系统的能力。在这里,我们提出了整合生物学启发的层次结构机制的步骤,以实现人造代理中的高级解决问题的技能。因此,我们首先回顾了认知心理学的文献,以强调构图抽象和预测性处理的重要性。然后,我们将获得的见解与当代分层增强学习方法联系起来。有趣的是,我们的结果表明,所有确定的认知机制都是在孤立的计算体系结构中单独实施的,这提出了一个问题,为什么没有单个统一体系结构可以集成它们。作为我们的最终贡献,我们通过提供有关开发这种统一体系结构的计算挑战的综合观点来解决这个问题。我们希望我们的结果可以指导更复杂的认知启发的层次机器学习体系结构的发展。

According to cognitive psychology and related disciplines, the development of complex problem-solving behaviour in biological agents depends on hierarchical cognitive mechanisms. Hierarchical reinforcement learning is a promising computational approach that may eventually yield comparable problem-solving behaviour in artificial agents and robots. However, to date the problem-solving abilities of many human and non-human animals are clearly superior to those of artificial systems. Here, we propose steps to integrate biologically inspired hierarchical mechanisms to enable advanced problem-solving skills in artificial agents. Therefore, we first review the literature in cognitive psychology to highlight the importance of compositional abstraction and predictive processing. Then we relate the gained insights with contemporary hierarchical reinforcement learning methods. Interestingly, our results suggest that all identified cognitive mechanisms have been implemented individually in isolated computational architectures, raising the question of why there exists no single unifying architecture that integrates them. As our final contribution, we address this question by providing an integrative perspective on the computational challenges to develop such a unifying architecture. We expect our results to guide the development of more sophisticated cognitively inspired hierarchical machine learning architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源