论文标题
元稀疏主成分分析
Meta Sparse Principal Component Analysis
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We study the meta-learning for support (i.e. the set of non-zero entries) recovery in high-dimensional Principal Component Analysis. We reduce the sufficient sample complexity in a novel task with the information that is learned from auxiliary tasks. We assume each task to be a different random Principal Component (PC) matrix with a possibly different support and that the support union of the PC matrices is small. We then pool the data from all the tasks to execute an improper estimation of a single PC matrix by maximising the $l_1$-regularised predictive covariance to establish that with high probability the true support union can be recovered provided a sufficient number of tasks $m$ and a sufficient number of samples $ O\left(\frac{\log(p)}{m}\right)$ for each task, for $p$-dimensional vectors. Then, for a novel task, we prove that the maximisation of the $l_1$-regularised predictive covariance with the additional constraint that the support is a subset of the estimated support union could reduce the sufficient sample complexity of successful support recovery to $O(\log |J|)$, where $J$ is the support union recovered from the auxiliary tasks. Typically, $|J|$ would be much less than $p$ for sparse matrices. Finally, we demonstrate the validity of our experiments through numerical simulations.