论文标题
对非标准性谐波振荡态的物理解释和对飞行波平衡的放松
Physical interpretation of non-normalizable harmonic oscillator states and relaxation to pilot-wave equilibrium
论文作者
论文摘要
在东正教量子形式主义中难以解释不可缩放的状态,但通常是量子重力中物理约束的解决方案。我们认为,飞行波理论对非标准化量子状态进行了直接的物理解释,因为该理论仅需要归一化的构型密度来产生统计预测。为了更好地理解此类状态,我们从试验波的角度进行了对谐波振荡器的非标准化解的首次研究。我们表明,与东正教量子力学的直觉相反,在大$ \ pm y $下的速度字段$ v_y \ to 0 $的意义上,不可差的本征及其叠加是绑定的状态。我们认为,为这种状态定义物理上有意义的平衡密度需要一个新的平衡概念,称为Pilot-Wave平衡,这是量子平衡概念的概括。我们定义了一个新的$ h $ -function $ h_ {pw} $,并证明了飞行器波平衡的密度最小化$ h_ {pw} $,是均等的,并且与时间保持平衡。在与量子平衡相似的假设下,我们证明了粗粒$ H_ {PW} $的$ H $ - 理论。我们用扰动和环境相互作用引起的非标准化状态的不稳定,对试验波理论中量化的出现进行解释。最后,我们讨论了量子场理论和量子重力的应用,以及对试验波理论和量子基础的影响。
Non-normalizable states are difficult to interpret in the orthodox quantum formalism but often occur as solutions to physical constraints in quantum gravity. We argue that pilot-wave theory gives a straightforward physical interpretation of non-normalizable quantum states, as the theory requires only a normalized density of configurations to generate statistical predictions. In order to better understand such states, we conduct the first study of non-normalizable solutions of the harmonic oscillator from a pilot-wave perspective. We show that, contrary to intuitions from orthodox quantum mechanics, the non-normalizable eigenstates and their superpositions are bound states in the sense that the velocity field $v_y \to 0$ at large $\pm y$. We argue that defining a physically meaningful equilibrium density for such states requires a new notion of equilibrium, named pilot-wave equilibrium, which is a generalisation of the notion of quantum equilibrium. We define a new $H$-function $H_{pw}$, and prove that a density in pilot-wave equilibrium minimises $H_{pw}$, is equivariant, and remains in equilibrium with time. We prove an $H$-theorem for the coarse-grained $H_{pw}$, under assumptions similar to those for relaxation to quantum equilibrium. We give an explanation of the emergence of quantization in pilot-wave theory in terms of instability of non-normalizable states due to perturbations and environmental interactions. Lastly, we discuss applications in quantum field theory and quantum gravity, and implications for pilot-wave theory and quantum foundations in general.