论文标题
下一项目建议的隐式会话上下文
Implicit Session Contexts for Next-Item Recommendations
论文作者
论文摘要
基于会话的建议系统在会话中捕获用户的短期兴趣。会话上下文(即,在大多数数据集中都没有明确给出会话上下文(即,会话中用户的高级兴趣或意图),并且隐含地推断会话上下文作为项目级属性的汇总是粗略的。在本文中,我们提出了ISCON,该ISCON隐含地将会议上下文化。 ISCON首先通过创建会话信息图,学习图嵌入和聚类来为会话生成隐式上下文,以将会话分配给上下文。然后,ISCON训练会话上下文预测指标,并使用预测上下文的嵌入来增强下一个项目的预测准确性。四个数据集的实验表明,ISCON的下一项目准确性比最先进的模型具有优越的下一项目预测准确性。 REDDIT数据集上的ISCON的案例研究证实,分配的会话上下文是独特而有意义的。
Session-based recommender systems capture the short-term interest of a user within a session. Session contexts (i.e., a user's high-level interests or intents within a session) are not explicitly given in most datasets, and implicitly inferring session context as an aggregation of item-level attributes is crude. In this paper, we propose ISCON, which implicitly contextualizes sessions. ISCON first generates implicit contexts for sessions by creating a session-item graph, learning graph embeddings, and clustering to assign sessions to contexts. ISCON then trains a session context predictor and uses the predicted contexts' embeddings to enhance the next-item prediction accuracy. Experiments on four datasets show that ISCON has superior next-item prediction accuracy than state-of-the-art models. A case study of ISCON on the Reddit dataset confirms that assigned session contexts are unique and meaningful.