论文标题
语音晶体腔雄伟
Phononic-crystal cavity magnomechanics
论文作者
论文摘要
建立一种控制磁动力学和基本激发(镁)的方法对于基本物理和寻找新现象和磁性固态系统中的功能至关重要。电磁波已被开发为在磁光谱,非挥发记忆和信息处理器中使用的宏伟和旋转器设备中驾驶和传感的手段。但是,它们的毫米级波长和不希望的串扰效率有限,并且使对密集的集成磁系统的个人控制变得困难。在这里,我们利用声波(声子)来控制微型语音晶体微型腔和波导体系结构中的磁化动力学。我们展示了局部铁磁磁化元素的声学泵,它们的反作用允许动态和模式依赖性调制声音腔共振。音调晶体平台可以实现空间驱动,控制和读取微小的磁性状态,并提供了一种用镁来调整声学振动的方法。这项替代技术增强了对经典和量子信息进行转导,处理和存储的高级感应,通信和计算体系结构的实用性。
Establishing a way to control magnetic dynamics and elementary excitations (magnons) is crucial to fundamental physics and the search for novel phenomena and functions in magnetic solid-state systems. Electromagnetic waves have been developed as means of driving and sensing in magnonic and spintronics devices used in magnetic spectroscopy, non-volatile memory, and information processors. However, their millimeter-scale wavelengths and undesired cross-talk have limited operation efficiency and made individual control of densely integrated magnetic systems difficult. Here, we utilize acoustic waves (phonons) to control magnetic dynamics in a miniaturized phononic crystal micro-cavity and waveguide architecture. We demonstrate acoustic pumping of localized ferromagnetic magnons, where their back-action allows dynamic and mode-dependent modulation of phononic cavity resonances. The phononic crystal platform enables spatial driving, control and read-out of tiny magnetic states and provides a means of tuning acoustic vibrations with magnons. This alternative technology enhances the usefulness of magnons and phonons for advanced sensing, communications and computation architectures that perform transduction, processing, and storage of classical and quantum information.