论文标题
关于Fano-Enriques的合理性三倍
On the Rationality of Fano-Enriques Threefolds
论文作者
论文摘要
Fano-Enriques三倍是三维的非戈伦斯坦Fano Fano索引1,最多具有规范的奇异性。我们研究具有末端循环商奇点的Fano-Enriques三倍的生育几何形状。我们研究了它们的合理性,还提供了一个Fano-Enriques三倍的示例,其柔韧性为9,即Fano-endriques在三倍的Biration上等同于Sarkisov类别中的9个Mori纤维空间。
A Fano-Enriques threefold is a three-dimensional non-Gorenstein Fano variety of index 1 with at most canonical singularities. We study the birational geometry of Fano-Enriques threefolds with terminal cyclic quotient singularities. We investigate their rationality, and also provide an example of a Fano-Enriques threefold, whose pliability is 9, i.e. a Fano-Enriques threefold birationally equivalent to exactly 9 Mori fibre spaces in Sarkisov category.